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The mucosal immune system in the oral cavity—an
orchestra of T cell diversity

Rui-Qing Wu1,2, Dun-Fang Zhang1,2, Eric Tu1, Qian-Ming Chen2 and WanJun Chen1

The mucosal immune system defends against a vast array of pathogens, yet it exhibits limited responses to commensal microorganisms

under healthy conditions. The oral-pharyngeal cavity, the gateway for both the gastrointestinal and respiratory tracts, is composed of complex

anatomical structures and is constantly challenged by antigens from air and food. The mucosal immune system of the oral-pharyngeal cavity

must prevent pathogen entry while maintaining immune homeostasis, which is achieved via a range of mechanisms that are similar or

different to those utilized by the gastrointestinal immune system. In this review, we summarize the features of the mucosal immune system,

focusing on T cell subsets and their functions. We also discuss our current understanding of the oral-pharyngeal mucosal immune system.
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INTRODUCTION

The oral-pharyngeal cavity is composed of sophisticated anatomical

structures. Various microorganisms colonize the environment provided

by those structures. In addition to microbes, food particles and external

substances consumed through the oral cavity present potential chal-

lenges to the homeostasis of the oral mucosa. Hence, a mucosal mem-

brane and inherent mucosal immune system are indispensable for the

protection of the integrity of the internal environment. The mucosal

immune system mounts immune responses through immune cells res-

iding in mucosal compartments. T lymphocytes residing in the mucosa

play important roles in mucosal immunity and tolerance. In addition, T

cell deficiency or defects in T cell function are associated with several

oral mucosal diseases. However, the phenotype and function of T cell

subsets that reside in the oral mucosa remain largely undetermined.

Thus, it is crucial to understand the diversity and functions of mucosal

T cell subsets in healthy and pathological conditions.

THE MUCOSAL IMMUNE SYSTEM

The mucosal immune system is a localized and specific immune organi-

zation protecting nearly the whole inner surface of the human body,

spanning the mucosal surfaces of the oral-pharyngeal cavity, gastro-

intestinal (GI) tract, respiratory tract and urogenital tract, as well as

the exocrine glands.1 Despite differences in their locations, the mucosal

immune system at different organs share similar anatomical organiza-

tion and features. As the GI mucosal immune system is better under-

stood, we will discuss here the features of the mucosal immune system

based on our knowledge of the GI immune system. The GI mucosal

immune system is composed of three major compartments: the epithe-

lial layer, lamina propria (LP) and the mucosal-associated lymphoid

tissue (MALT), which, in the GI tract, is referred to as gut-associated

lymphoid tissue. The gut-associated lymphoid tissue consists of Peyer’s

patches and isolated lymphoid follicles. The epithelium and LP are the

battlefront, and the MALTs represent the headquarters where adaptive

immune responses are initiated (Figure 1). T cells are abundant in the

GI immune system. In normal mice, there is approximately one intrae-

pithelial lymphocyte (IEL) per 5–10 epithelial cells (ECs) in the small

intestine; in the colon, this ratio is approximately one IEL per 40 ECs.2

In healthy adults, it is estimated that one IEL exists per 5–20 ECs in the

intestines.3 Nonetheless, the ratios and compositions of IELs may vary

depending on the condition of the host. Antigen presenting cells

(APCs) capture antigens from the epithelium and microfold cells (M-

cells) in Peyer’s patches and then migrate to lymphoid follicles, LP and

mesenteric lymph nodes, where T cells are exposed to antigens pre-

sented by APCs. After antigen recognition, these T cells become acti-

vated and differentiate into effector cells (Figure 1).1–2 Lymphocytes,

including IELs and LP lymphocytes, form a network that ensures the

integrity of the mucosal barrier and GI environment.

Conventional T cells in the mucosa can be classified as either major

histocompatibility class II (MHC II)-restricted and ab T cell receptor

(TCR)-expressing CD41 T cells (helper T cells, or TH cells) or MHC

I-restricted and ab TCR-expressing ab1 T cells. These T cells develop

in the thymus and migrate into mucosal effecting sites after encoun-

tering antigen stimuli in lymphoid tissues.2,4 However, in the mucosa,

another unique subset of T cells exists within the epithelial layer. These

T cells express either ab or cd TCR and mostly express CD8aa homo-

dimers but not CD8ab heterodimers, i.e., unconventional CD8aa1

ab T cells and cd T cells.
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T CELL SUBSETS AND FUNCTIONS IN MUCOSAL IMMUNITY

TH cells: differentiation and their functions

The mucosa is a cytokine-rich environment where ECs, macrophages,

dendritic cells (DCs) and T cells produce various types of cytokines, such

as transforming growth factor (TGF)-b, interleukin (IL)-6, IL-10 and IL-

12.5 After TCR activation, naive T cells differentiate into different TH

subsets depending on different cytokine milieu. These TH cells then exert

either inflammatory or regulatory responses.6–8 During the past few

decades, several TH subsets have been identified: TH1, TH2, TH17,

TH22, TH9, follicular helper T (Tfh) cells and regulatory T (Treg) cells.6,9

These subsets are characterized by the production of different effector

cytokines and the expression of distinct transcription factors (Figure 2).

Here, we focus on TH cells and Treg cells.

TH1 and TH2 cells were the first TH subsets described.10–11 In infec-

tions caused by intracellular pathogens, such as certain types of bac-

teria (e.g., Listeria monocytogenes) or viruses, macrophages, DCs and

natural killer (NK) cells produce large amounts of IL-12 and inter-

feron (IFN)-c. These cytokines then drive TH1 cell differentiation

through the activation of the signal transducer and activator of tran-

scription (STAT) 1 and Janus kinase–STAT pathways.12 During TH1

cell differentiation, the transcription factor T-bet, which is the master

transcription factor of TH1 cells, is induced through the STAT1 path-

way,6 and T-bet expression has been shown to promote IFN-c pro-

duction.11 IFN-c is a major effector cytokine of TH1 cells, which

functions to recruit neutrophils and enhance antigen recognition

and phagocytosis of intracellular microbes.11 TH1 cell cytokines also

promote cytotoxic lymphocyte and NK cell responses that are critical

to the cell-mediated immune responses in viral infections and tumour

immunity. In addition, TH1 cells are also linked to the development of

autoimmunity. Studies have demonstrated significantly elevated levels

of IL-12, TNF-a and IFN-c in a mouse model of inflammatory bowel

diseases (IBD), which is caused by unrestricted TH1 cell responses to

commensal bacteria.13 Moreover, in autoimmune gastritis, consid-

erable amounts of IL-12, TNF-a and IL-6 are produced in chronic

immune responses induced by Helicobacter pylori, which promotes

TH1 cell differentiation.14

TH2 cell differentiation is initiated by TCR signalling together with

IL-4 and subsequently by STAT6 signal transduction, leading to the

expression of the transcription factor GATA-3.15 GATA-3 is an activ-

ator of IL-4 and IL-13 and GATA-3 also induces its own expression,

thus allowing TH2 cell stabilisation.6–7,10–11 TH2 cells contribute to the

recruitment of leukocytes and macrophage activation by the secretion

of IL-4 and IL-13. TH2 cells also stimulate and increased mucus secre-

tion from the epithelial cells of the airway and GI tract. The mucus

layer protects the epithelium by trapping foreign particles and restrict-

ing microorganism colonisation.16–17 TH2 cells are crucial for resisting

and eradicating helminthic infections.16–18 TH2 cell cytokines pro-

mote innate immune responses to worms by recruiting mast cells

and basophils and inducing antibody production in B cells.16

Moreover, TH2 cell cytokines stimulate the production of mucins

and anti-nematode protein resistin-like molecules.16 However, TH2

cells may also play a role in the pathogenesis of asthma, as increased

numbers of TH2 cells in the airways of asthmatic patients have been

observed. IL-4, IL-5 and IL-13 produced by TH2 cells cause and main-

tain asthmatic pathophysiological features, such as allergic sensitisa-

tion and immunoglobulin (Ig) E production.19
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Figure 1 The overall scheme of the GI mucosal immune system. The GI mucosal immune system consists of three major compartments: epithelium, LP and gut-

associated lymphoid tissue. IELs reside within the epithelium layer. DCs project dendrites into the epithelium to uptake antigens and migrate to the LP, secondary

lymphoid tissue and draining lymph nodes, where they prime naive T cells. M-cells, located in the epithelium of Peyer’s patches, pass the antigens to DCs,

macrophages and other APCs. Naive T cells in secondary lymphoid tissues become activated after being primed by APCs and home to LP (called LPLs) or infiltrate

into inflamed epithelium. APC, antigen presenting cell; DC, dendritic cell; GALT, gut-associated lymphoid tissue; GI, gastrointestinal; IEL, intraepithelial lymphocyte;

LP, lamina propria; LPL, lamina propria lymphocyte; M-cell, microfold cell.
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TH17 cells are identified as an IL-17-producing CD41 T cell lineage

and are regulated by two lineage-specific transcription factors—retinoic

acid receptor-related orphan receptor (ROR)a and RORct.20–22 TGF-b

and IL-6 promote the differentiation of TH17 cells in vivo and in vitro.20

TH17 cells exhibit potent pro-inflammatory functions due to their pro-

duction of IL-17, which functions as a major anti-infection agent in

defense against fungus.23 Many autoimmune diseases in humans have

been found to be associated with TH17 cells, such as multiple sclerosis,

rheumatoid arthritis, asthma and IBD.24 Interestingly, TGF-b is found

to induce both Foxp3 and RORct expression, revealing that TGF-b

regulates the fine balance between Treg and TH17 cells. In addition,

other factors, such as E2A (a member of the helix–loop–helix protein

family) and retinoic acid, are also involved in controlling the balance

between Treg and TH17 cells.5,25

TH9 cells were recently described as a new member of TH cell

family.26 The differentiation of TH9 cells is induced by TGF-b and

IL-4.27 TH9 cells have similar functions as TH2 cells, but are distin-

guished by IL-9 production.26–28 IL-9 gene expression may be regu-

lated in an epigenetic manner, carrying a ‘poised’ or bivalent mark in

most activated T cells, and this mark can be activated by TGF-b and

silenced by IFN-c.26 One study has proposed that PU.1 may be one of

the key transcription factors for TH9 cell polarisation.29 TH9 cells are

believed to be involved in airway inflammation because IL-9 is

detected in TH cells that localized in asthmatic tissue.30 In addition,

the expression of IL-9 causes airway inflammation and hyper-respon-

siveness.19 However, much work is required to address the develop-

ment and biological significance of TH9 cells.

TH22 cells were initially identified as a group of CD41CCR61

memory T cells in the peripheral blood. TH22 cells also express the

skin-homing chemokine receptors CCR4 and CCR10 and secrete IL-

22 upon stimulation.31–32 TH22 cells rarely produce IFN-c and IL-17

and express low or undetectable levels of T-bet, GATA3, and RORct,

unlike other IL-22-producing cells such as TH17 and TH1 cells.11,32–33

TH22 cells can be induced in the presence of IL-6 and TNF in vitro.

Furthermore, plasmacytoid DCs can trigger the differentiation of

TH22 cells.32 Culture of naive CD41 T cells from cord blood with

IL-1b and IL-23, either in the presence or absence of IL-6, leads to

the production of IL-22.32 The aryl hydrocarbon receptor is believed

to be a vital transcription factor for IL-22 expression and TH22 differ-

entiation. Because the majority of TH22 cells express CCR4 and

CCR10, it is likely that TH22 cells are crucial for skin immunity.34

IL-22 is an important cytokine against extracellular pathogens

through synergising with other pro-inflammatory cytokines.35

Moreover, IL-22 receptors are expressed on many types of ECs.

Subsequently, IL-22 can initiate and promote epithelial responses

through IL-22 receptors.36 It has been suggested that IL-22 produced

by TH22 and TH17 cells is critical for psoriasis pathogenesis because it

induces hyperplasia, abnormal differentiation, and psoriatic gene

expression on keratinocytes. However, IL-22 exhibits a protective role

in IBD by enhancing epithelium integrity.37 Furthermore,

CD41CD45RBhi T cells from IL-22-deficient mice result in more

severe disease in an IBD mouse model.37–39

Notably, TGF-b, which is rich in the mucosal environment, plays a

vital role in T cell differentiation. It is also important in maintaining

immune balance within the GI tract.5 Furthermore, TGF-b stimulates

the production of IgA antibodies, which promotes the integrity of

mucosal immunity. Treg cells are critical for the regulation of the

immune response and T cell tolerance.40 TGF b is indispensable for
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Figure 2 The paradigm of TH subsets and their cytokine profiles. After priming by APCs, naive T cells begin proliferating and differentiating. TH differentiation

depends on the cytokine environment. TGF-b drives Treg cell generation; furthermore, in combination with IL-6 or IL-4, TGF-b also drives TH17 and TH9 cell

differentiation, respectively. Cytokines initiate downstream signalling pathways to promote the expression of transcription factors such as the TH1 cell master

transcription factor T-bet and the TH2 cell master transcription factor GATA3. These transcription factors are indispensable for their key roles in TH cell cytokine

expression and TH cell function. APC, antigen presenting cell; IL, interleukin; INF, interferon; TGF, transforming growth factor; TH, T helper cell; Treg, regulatory T cell.

The mucosal immune system in oral cavity
RQ Wu et al

127

International Journal of Oral Science



Treg cell induction and function.41–42 Moreover, Foxp3, the Treg cell

master transcription factor, is induced by TGF-b and plays a critical

role in Treg cell development and function.25,41,43–46 Treg cells inhibit

the activity and immune response of numerous immune cells, including

T cells and macrophages, by producing TGF-b and IL-10.47–48 Reports

have demonstrated that TGF-b signalling pathway is impaired in

patients with Crohn’s disease and other forms of IBD.4–5,42,49 IL-10

is another inhibitory cytokine that is important to mucosal environ-

ments. Mice lacking IL-10 exhibit colitis and severe GI pathology. IL-10

can be produced by Treg cells and is known to inhibit the activation

of macrophages and DCs. IL-10 also suppresses the production of

IL-12 by activated macrophages and DCs, thus inhibiting TH1 cell

differentiation.5,40,42,49

IELs: a unique population in epithelium

The IELs serve as the immune guardians at the frontline of the mucosal

immune system. As discussed previously, the ab and cd IELs are the

two major IELs. The cd T cell precursors mostly derive from thymo-

cytes.2,50 In contrast to conventional ab T cells that mostly home into

lymphoid tissues, cd T cells migrate directly to peripheral tissues, such

as the cutaneous layer, GI tract, lungs and genital tracts, before birth

and during the neonatal period.51–53 Hence, it is believed that cd T

cells contribute to immune protection immediately after birth. Unlike

abT cells, cdT cells perform their immune function in an ‘innate-like’

manner. Although cd T cells respond to antigens presented by MHC

molecules, these cells are not restricted by MHC molecules. Activation

of TCRs is triggered after cd T cells engage with MHC-like molecules

(CD1d), MHC-related molecules (such as MR1 and CD1c), as well as

MHC-unrelated molecules (such as pathogen-associated molecular

patterns and danger-associated molecular patterns).51–52,54–55

Notably, cd T cells also express Toll-like receptors (TLRs) and NK

receptors, including TLR2, TLR3, TLR4 and NKG2D.55 Therefore,

these cells are believed to potentially sense cell stress and antigens

directly.51–52 Moreover, it has been recently suggested that some cd T

cells (such as dendritic epidermal cd T cells) are responsible for wound

healing and exhibit immune surveillance functions.56 Considerable

amounts of cd IELs express CD8aa coreceptor in the GI tract and have

been shown to perform either regulatory or pro-inflammatory func-

tions. Intestinal cd IELs produce INF-c and TNF-a in response to

infections and have been shown to promote inflammation in murine

models of IBD.51,57–58 Interestingly, cd IELs can also play a regulatory

role in the gut by producing IL-10 and TGF-b1, which suppresses INF-c

production by effector T cells.51 Moreover, cd IELs protect the epithelial

integrity by producing TGF-b and keratinocyte growth factor.51,59

Another crucial IEL subset is TCRab1CD8aa1 IELs. As described

earlier, these cells express coreceptor CD8aa homodimers. The presence

of CD8aa homodimers is considered to be a hallmark of the activa-

ted phenotype, although CD8aa applies a suppressive signal to TCR

activation.2,51,60 Studies have demonstrated that TCRab1CD8aa1 IELs

are associated with intestinal antigen tolerance, immune regulation

and antimicrobial function.51 A recent report has demonstrates that

TCRab1CD8aa1 IELs are derived from TCRab1CD42CD82 double

negative thymocytes.61 Importantly, we have reported that TGF-b

controls the development of these CD8aa1 intestinal IELs.62 In addi-

tion, TGF-b also induces CD8a expression in peripheral CD41 T cells

to generate a CD41CD8a1 double-positive IELs.16,62 Although the

function of TCRab1CD8aa1 IELs remains largely unknown, they

may possess immune regulatory functions through the production

of TGF-b, lymphocyte activation gene 3 and other inhibitory mole-

cules such as cytotoxic T lymphocyte-associated antigen, programmed

cell death 1 and several inhibitory NK cell receptors (Table 1).51,63

The oral-pharyngeal mucosal immune system

The oral-pharyngeal mucosa shares many features with the gastro-

intestinal and respiratory tract yet has its own distinctive character-

istics. Structurally, the oral-pharyngeal mucosa possesses a stratified

squamous epithelium instead of a single layer epithelium. The LP

underlying the epithelium is composed of loose connective tissue that

contains blood and lymphatic vessels. Indeed, the oral-pharyngeal

mucosa forms a mechanical barrier that is thicker and denser than

gastrointestinal mucosa. However, the pharyngeal mucosa is none-

theless permeable and fragile.64–65 Uniquely, in the oral cavity, teeth

extend through the mucosa; the periodontal epithelium surrounds

teeth, forming an attachment and seal. However, the periodontal epi-

thelium is a weak point for microorganism entry. Thus, a powerful

oral-pharyngeal immune system is indispensable in safeguarding the

integrity of the oral mucosa.

A proposed model of the oral-pharyngeal immune compartments

suggests that they represent specialized MALT consisting of buccal

mucosa, salivary glands and Waldeyer’s ring (mainly composed by

palatine tonsils and adenoids).66 However, others have suggested that

the network of the oral-pharyngeal mucosal immune system resembles

the gastrointestinal mucosal immune system and is composed of

inductive and effector sites. The inductive sites include MALT (mainly

consisting of tonsils and salivary glands), lymphoid follicles, and

Table 1 Notable T cell populations in the mucosal immune system

Cell type Markers Induction/precursor Major cytokine profile References

TH1 TCRab, CD4, T-bet* IL-12, IFN-c IFN-c 6–7,10–12

TH2 TCRab, CD4, GATA3* IL-4 IL-4, IL5, IL-13 6–7,10–12,15

Treg TCRab, CD4, CD25, Foxp3* TGF-b, IL-2 TGF-b, IL-10 25,41–42,45,47

TH17 TCRab, CD4, RORct* TGF-b1IL-6 IL-17, IL-22 11,20–21,25,43,46

TH9 TCRab, CD4, PU.1* TGF-b1IL-4 IL-9 6,26–30

TH22 TCRab, CD4 IL-6, TNF-a IL-22 6,31–34,39

Tfh TCRab, CD4, CXCR5, Bcl-6* IL-6, IL-21, B cells IL-21, IL-10 9

TCRab1CD8ab1 IEL TCRab, CD8a, CD8b Same as conventional T cells Perforin, granzymes, IFN-c 2,4,51,57,61–62

TCRab1CD8aa1 IEL TCRab, CD8a TCRab1CD42CD82 thymocytes, TGF-b

controls the development

TGF-b, IL-10 2,4,51,57,61–62

cd IEL TCRcd (CD8a) TCRcd1CD42CD82 thymocytes TGF-b, IFN-c, IL-10, IL-17 2,4,50–53

IEL, intraepithelial lymphocyte; IL, interleukin; IFN, interferon; ROR, receptor-related orphan receptor; TCR, T cell receptor; TGF, transforming growth factor; TH, T helper

cell; Tfh, follicular helper T cell.

* Intracellular markers and transcription factors.
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draining lymph nodes. In contrast, the effector sites include epithe-

lium, LP and salivary glands.65,67 The inductive sites are where most

lymphocytes are activated and expanded upon antigen stimulation.

On the contrary, the effector sites are where activated lymphocytes

migrate and relocate to mediate immune responses.68

Compartmentalized immune cells, such as IELs and LP lympho-

cytes, undertake the elimination of foreign antigens. After antigen

uptake, DCs, macrophages and Langerhans cells (LCs) residing in

the epithelium or LP migrate into MALT and draining lymph nodes

and initiate the adaptive immune responses by inducing T cell proli-

feration and differentiation.69–70 In addition, a group of M-cell-like

cells has been identified in the epithelium of palatine tonsil crypt that is

responsible for luminal antigen uptake.65–66 The mucosa is described

as a ‘slippery ground’17 that is covered with mucus. In the oral cavity,

the mucosa is covered with saliva that contains immunoglobulins,

such as secretory IgA, antimicrobial peptides such as defensins, and

enzymes secreted by salivary glands (Figure 3).17,64,66,71–72

Among the immune cells in the oral-pharyngeal mucosa, DCs are

relatively better studied.65,73 In in murine models, different subsets of

CD11c1 DCs, as well as LCs reside in the epithelium of buccal, sub-

lingual and gingival mucosa. DCs and LCs are APCs; thus, in oral

mucosa, DCs are responsible for antigen capture and antigen presenta-

tion to T cells. Compared with DCs and LCs, T cell populations such as

IELs in the oral-pharyngeal mucosa are less studied. In patients with

dermatitis herpetiformis, the ab and cdT cells reside in the epithelium

of oral mucosa.74–75 However, CD8aa1 IELs in the oral-pharyngeal

mucosa have not been identified and characterized until recently (RQ

Wu and W Chen, in preparation).

Oral mucosal diseases with immunopathogenesis

In clinics, various mucosal diseases have been observed in the oral

cavity, including viral infection, candida infection and oral lichen

planus (OLP). These mucosal diseases are mainly caused by immune

deficiency and/or the dysregulation of the oral immune system. In

particular, T cells have been suggested to be associated with the

development of these diseases, yet their causative roles have not been

established. In this section, we highlight the recent findings on the

roles of T cells in oral mucosal diseases.

An example of mucosal immune system dysfunction can be

observed in human immunodeficiency virus (HIV)-infected indivi-

duals. HIV infection leads to low levels of CD41 T cells and results in

immune deficiency.76 People infected with HIV are highly susceptible

to infection by oral and pharyngeal commensal bacteria and fungi

such as Candida albicans due to the weakening of the TH cell res-

ponse.66,77–78 Another example is hyper-IgE syndrome, which results

from STAT3 mutations. Patients with hyper-IgE syndrome suffer

from oral candidiasis due to a deficiency of TH17 cells,79 consistent

with animal studies demonstrating that mice with TH17-deficiency (IL-

23p192/2 mice) and IL-17 receptor-deficiency (IL-17RA2/2 mice)

develop severe Candida albicans infection in the oral cavity.80 Although

TH17 cells are important for oral immune responses against fungus,

evidence suggests that aberrant or uncontrolled TH17 cell responses

result in chronic inflammation towards candidiasis, which ultimately

results in autoimmunity.77,81

Immune responses to food antigens and commensal bacteria gen-

erally do not induce any inflammation but do induce immune tol-

erance. Autoimmune diseases may occur as a result of unrestricted

immune responses to commensal bacteria. Many inflammatory and

autoimmune diseases have been shown to develop in the oral mucosa,

such as periodontitis, Sjögren’s syndrome and OLP. Periodontitis is

initiated by the accumulation of bacterial plaque, subsequent tissue

damage and bone loss due to host immune responses and inappropriate

inflammation. TH cells are found to play an important role in the

recruitment of neutrophils and osteoclasts. Consequently, the gingival

Oral-pharyngeal cavity

M-cell-like cell
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Lamina propriaLP lymphocyte

Cervical and facial lymph node

Macrophage DCs

LCsIELs
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Figure 3 The structures and immune cells in the oral immune system. The oral-pharyngeal immune system shares similar anatomical compartments of other

mucosal immune system. The oral mucosa consists of stratified squamous epithelium, LP and MALTs. DCs, LCs and IELs reside in the epithelial layer. DCs in the LP

project dendrites into the epithelium to uptake antigens and migrate to secondary lymphoid tissue and draining lymph nodes. MALTs in the oral-pharyngeal cavity are

located in the tonsils and are organized lymphoid follicles. M-cell-like cells in the tonsil epithelium also function to transfer antigens to APCs. APC, antigen presenting

cell; DC, dendritic cell; IEL, intraepithelial lymphocyte; LP, lamina propria; MALT, mucosal-associated lymphoid tissue; M-cell, microfold cell.
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barriers are destroyed together with the retraction of gingiva and

destruction of alveolar bone.82–83 OLP, a chronic inflammatory disease,

is characterized by massive lymphocyte infiltration in the LP and

results in chronic destruction of the epithelium basal layer.84–86

Scully et al.75,85,87–88 suggested that TH1 and TH2 cells contribute

to inflammation and mucosal lesion formation in OLP. Pro-inflam-

matory cytokines, including IL-6, IL-17 and TNF-a, are increased

in the saliva and serum of OLP patients.89–90 On the contrary, TGF-

b is decreased in the serum of OLP patients compared with that of

healthy individuals.91 A single nucleotide polymorphism study on

IL-10 polymorphisms revealed higher frequencies of four haplo-

types (including -1082 G/A, -819 C/T and -592 C/A polymorph-

isms) in the peripheral blood of OLP patients, that correlated with a

lower serum IL-10 level.92 Based on these findings, some reports

have suggested that T cells might be involved in OLP development.

Nevertheless, given that many immune cell types are capable of

producing these cytokines, the roles of T cells in the pathogenesis

of OLP remain be determined.

Oral mucosal tolerance is defined as immune tolerance induced

by oral mucosa.65 Oral mucosal tolerance is distinct from ‘oral

tolerance’, which is tolerance induced within the GI mucosal

immune system. Oral mucosal tolerance induced by sublingual

immunotherapy is a promising therapeutic for allergy, such as

rhinitis.93–94 Upon antigen stimulation and immunisation via

sublingual mucosa, DCs induce the generation of Treg cells by

producing TGF-b and other mediators, such as indoleamine 2,3-

dioxygenase.65,93,95 Cytokines produced by Treg cells, such as IL-

10 and TGF-b, and inhibitory ligands expressed on Treg cells,

such as CTLA-4, can limit TH cell responses.48,96 In addition,

constitutively expressed inhibitory molecules on DCs and LCs

such as B7-H molecules are responsible for oral mucosal tol-

erance.65 Studies have indicated that the intraoral administration

of a T cell epitope peptide via the mucosa prior to allergen chal-

lenge limited T cell proliferation in oral-pharyngeal draining

lymph nodes.97 Furthermore, studies have demonstrated that

greater T cell suppression is induced by intraoral instead of intra-

gastric administration, which suggests that ‘oral mucosal tole-

rance’ is more effective than ‘oral tolerance’.97

CONCLUDING REMARKS

In this review, we have discussed the mucosal immune systems in

terms of its structure, cell components, and protective mechanisms

based on our knowledge of the GI mucosal immune system. We

have also summarized current findings on the development and

differentiation of TH cells and IELs. In addition, we review recent

advances in our understanding of the oral-pharyngeal mucosal

immune system. It is well established that in the gut mucosal

immune system, compartmentalized immune cells constitute an

effective and dynamic network in which numerous types of cells

and molecules contribute to the balance between immune tolerance

and immune response. Studies on animal disease models such as

colitis and IBD illustrate an altered pathological status of the

immune system. In addition, in the oral mucosa, ECs and immune

cells produce a wide range of cytokines, including IL-1b, IL-6,

TNF-a, granulocyte-monocyte colony-stimulating factor and

TGF-b,65,84,98 which contribute to an environment that impacts T

cell activation, proliferation and differentiation. However, much

work is required for a clear understanding of T cell subsets and

their function in the oral pharyngeal immune system. Therefore,

in the future, it is important to focus our attention on the oral

mucosal TH cell diversity, T cell networks and T cell functions

under both healthy and pathological conditions.
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