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L
Lacruz RS, Habelitz S, Wright JT, Paine ML. Dental Enamel Formation and Impli-

cations for Oral Health and Disease. Physiol Rev 97: 939–993, 2017. Published May
3, 2017; doi:10.1152/physrev.00030.2016.—Dental enamel is the hardest and
most mineralized tissue in extinct and extant vertebrate species and provides maximum
durability that allows teeth to function as weapons and/or tools as well as for food

processing. Enamel development and mineralization is an intricate process tightly regulated by cells
of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the
developing enamel tissue and move as a single forming front in specified directions as they lay down
a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain inter-
cellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives
nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms
extracellular crystals within specified pH conditions. In this unique environment, ameloblasts
orchestrate crystal growth via multiple cellular activities including modulating the transport of
minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the
enamel tissue volume is first formed and subsequently mineralized by these same cells as they
retransform their morphology and function. Cell death by apoptosis and regression are the fates of
many ameloblasts following enamel maturation, and what cells remain of the enamel organ are
shed during tooth eruption, or are incorporated into the tooth’s epithelial attachment to the oral
gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental
genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well
as the clinical outcomes resulting from abnormal ameloblast function.
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I. INTRODUCTION

Dental enamel is the hardest substance in the human body
and serves as the wear-resistant outer layer of the dental
crown. It forms an insulating barrier that protects the tooth

from physical, thermal, and chemical forces that would oth-
erwise be injurious to the vital tissue in the underlying den-
tal pulp. Because the optical properties of enamel are also
derived from its structure and composition (205), develop-
mental defects or environmental influences affecting enamel
structure are typically visualized as changes in its opacity
and/or color. The impact of developmental insults on
enamel is critical because, unlike bone, once mineralized,
enamel tissue is acellular and hence does not remodel.

In mammals, dental enamel is the only epithelial-derived
tissue that mineralizes in nonpathological situations (bone
and dentin, the other principal mineralized tissues, are de-
rived from mesenchymal cells). Enamel forms within an
organic matrix composed of a unique grouping of extracel-
lular matrix proteins (EMPs) that show little homology to
proteins found in other tissues. The enamel organ is formed
by a mixed population of cells. Among these are amelo-
blasts, which are primarily responsible for enamel forma-
tion and mineralization, and form a monolayer that is in
direct contact with the forming enamel surface.
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The process of enamel formation is referred to as amelogen-
esis. Enamel matrix proteins are secreted by ameloblasts
into the enamel space, and are later degraded and proteo-
lytically removed, also by ameloblasts. It is with a high level
of precision that ameloblasts regulate the formation of a de
novo hydroxyapatite-based (Hap-based) inorganic material
within the enamel space. The formed enamel has a charac-
teristic prismatic appearance composed of rods, each
formed by a single ameloblast and extending from the den-
tino-enamel junction (DEJ) to the enamel surface, and the
interrod enamel located around the enamel rods. Traces of
EMP peptides are included in the fully formed enamel and
are believed to contribute to the final structure, such that
the fully formed (mature) enamel has unique morphological
and biomechanical properties. By weight, mature enamel is
~95% mineral, ~1–2% organic material, and ~2–4% water
(100, 331, 479, 509, 523, 548).

In this review, we discuss enamel from its developmental
beginnings to its final structure. We will pay particular at-
tention to the proteins comprising the enamel matrix, the
role of ameloblast-mediated ion transport and mineraliza-
tion, and the importance of extracellular pH regulation dur-
ing enamel formation. There is also mounting information
on the clinical outcomes that result from abnormal amelo-
blast function related to specific gene mutations, and we
will summarize what is currently understood about enamel
genotype-phenotype relationships.

II. DENTAL TISSUES: HUMAN, RAT, AND
MOUSE TEETH

All mammalian teeth share a similar structure: 1) the
enamel crown, formed by epithelial cells; 2) the dentin
found underlying the enamel, formed by mesenchymal cells
and containing a large collagen component; 3) the pulp, the
organ generating/supplying the dentin-forming cells (odon-
toblasts), and also containing vasculature and nerve supply;
4) the root, comprised primarily by the dentin, but also
containing the root canal and surrounded by a thin layer of
mineralized cementum; and 5) the periodontal ligament,
which is part of the dental socket that unites the cementum
to the alveolar bone (FIGURE 1) (263, 333, 355, 403, 507,
655). Enamel is far more mineralized than the other tooth
structures and serves to protect the dentin and pulp. Enamel
contains no collagen, and once formed is devoid of any
cells, so it cannot remodel.

Humans are diphyodonts (having 2 sets of teeth) with an
initial/primary dentition of 20 teeth and a secondary/per-
manent dentition of 32 teeth. Rats and mice are monophy-
donts (having one set of teeth) with a single dentition of 16
teeth. Rats and mice have become widely used animal mod-
els to study tooth formation because rodents have continu-
ously growing maxillary and mandibular incisors. This
characteristic in rodents means that throughout the ani-

mal’s lifespan, all stages of amelogenesis (see below) can be
studied on a single incisor at any one time.

III. AMELOGENESIS

A. Embryological Development of Teeth

The staging of tooth formation has been studied histologi-
cally and morphologically for centuries. The principal
stages include the initial development of a dental lamina
comprising an inward growing band of thickened oral epi-
thelium at specific sites determined by the localized expres-
sion of key transcription factors (FIGURE 2). The dental
lamina rapidly folds and penetrates the underlying mesen-
chyme to form the dental placode, followed by the bud, cap,
and bell stages. These stages shape the crown, which is then
followed by the development of the roots. The mesenchyme
immediately underlying the dental epithelium is derived
from cranial neural crest cells (74). Very early in tooth
formation there is epithelial-mesenchymal molecular cross-
talk initially orchestrated by the mesenchyme, such that
epithelial cells destined to create enamel start to differenti-
ate to form ameloblasts, and the underlying neural crest-
derived mesenchyme differentiates into cells that will form
the remainder of the tooth. It is beyond the scope of this
review to discuss the morphogenesis and histology of mam-
malian tooth formation, or the cellular origins and molec-
ular signals used locally to direct odontogenesis; however,
the reader is directed to some outstanding publications that
cover all these topics (74, 262, 271, 377, 378, 403, 594).

Crown
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(part of gum)
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(blood vessels
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FIGURE 1. The anatomy of a human mandibular molar tooth. The
major features of the mammalian tooth include the enamel, dentin,
pulp contained within the pulp chamber, the root canal that carries
the nerve and vasculature to the pulp, cementum, periodontal liga-
ment, and the alveolar bone.
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B. Amelogenesis

1. Overview of enamel formation

Enamel development involves two major functional stages,
secretory and maturation, with a brief transition between
the two stages (403), although additional subdivisions may
include: presecretory, early secretory, late secretory, transi-
tion, preabsorptive, early maturation, and late maturation
stages (17, 273, 299, 464, 524). Throughout this review we
focus primarily on the secretory and maturation stages as
the bulk of data available to date, on the secretion of struc-
tural matrix proteins and proteinases, and on ionic trans-
port, relates to these two stages.

2. The enamel organ

Amelogenesis involves the formation of a number of epithe-
lium-derived cell types. The innermost layer, the inner
enamel epithelium, is a single layer of cells that differentiate
into ameloblasts. The outermost layer is also a single layer
of cells, referred to as the outer enamel epithelium. The
inner and outer enamel epithelium converge at a region
called the cervical loop, which is a niche for dental epithelial
stem cells (47, 204, 272, 336, 379, 380, 420) and thus
provides a constant source of enamel-forming cells until the
enamel crown is fully formed with one exception. In rodent
incisors, the long teeth in the upper and lower jaws, the stem
cell niche in the cervical loop is retained for life, enabling the
continuous growth of these teeth.

The cells comprising the enamel organ in the secretory stage
and maturation stage are morphologically very different
(228, 541). Hu et al. (228) illustrated the changing amelo-
blast morphologies throughout amelogenesis as viewed his-
tologically. During the secretory stage, four cell populations
are easily recognized: a single layer of secretory amelo-
blasts; the stratum intermedium, typically one or two cell
layers thick; the stellate reticulum comprised of a larger
grouping of star-shaped cells; and the single-layer outer

enamel epithelium (FIGURE 3). The vascular network that
supplies nutrients to the developing enamel organ is associ-
ated with the outer enamel epithelium (275, 403). The anat-
omy of the enamel organ changes quickly and dramatically
from secretory to maturation stage. Secretory ameloblasts
transform, after a short transition period, and become
shorter; they have frequently been referred to as squatter
maturation cells (320, 403, 541). The other three epithelial
cell populations identified in the secretory stage (stratum
intermedium, stellate reticulum, and outer enamel epithe-
lium) reorganize to become the papillary layer (PL) cells
that are rich with blood vasculature weaving through its
folds (FIGURE 3).

The functional roles of these cell populations of the enamel
organ, other than the ameloblasts, are poorly understood
(343). The stratum intermedium has high alkaline phos-
phate (ALPL) activity (225, 640), suggesting that its func-
tion may be to facilitate transport of phosphate from the
circulation to the developing enamel organ (640). Cells of
the stellate reticulum maintain contact with each other
through numerous desomosomes and gap junctions, giving
them a star-like appearance (366, 367). The stellate reticu-
lum cells express glycoaminoglycans such as perlecan,
which accumulate in the intercellular spaces (245). The
outer enamel epithelium is a single layer of cuboidal cells
covering the entire enamel organ, thought to form a protec-
tive buffer isolating the other cells of the enamel organ
(403). During the transition to maturation stage, the stra-
tum intermedium, stellate reticulum, and possibly also the
outer enamel epithelium reorganize to form the PL cells (61,
269). The PL cells are vascularized and participate in ion
transport during the maturation stage, aiding the move-
ment of ions from the blood circulation to the ameloblasts
(61, 269).

3. Secretory-stage amelogenesis

During the secretory stage, ameloblasts are highly polarized
cells. The height (basal-apical distance) of a secretory

Dental lamina Placode Bud Cap Bell

FIGURE 2. The principal stages of tooth formation. Thickening of the oral epithelium (blue) to form the dental
lamina, the placode, bud, cap, and bell stages. The dental epithelium is shown in blue, the neural crest-derived
mesenchyme in green, and all other (non-neural crest-derived) underlying mesenchyme in pink. At the cap and
bell stage, the outer enamel epithelium is shown in white, the inner enamel epithelium (ameloblasts) is shown
in orange, and the dentin-forming cells (odontoblasts) are shown as light brown. At the bell stage the forming
enamel is yellow and the dentin dark brown. Green represents the (cranial) neural crest-derived mesenchymal
cell population that migrates to the dental lamina and will eventually form the pulpal tissues seen in the bell
stage.
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ameloblast can be as great as 90 �m but is generally ~70
�m, while a narrow average diameter is ~5 �m, as detailed
by Smith (541). These cells synthesize and secrete a limited
number of structural enamel matrix proteins (EMPs), most
notably amelogenin (AMELX), ameloblastin (AMBN), and
enamelin (ENAM) (316, 541, 544). A unique characteristic
observed in the morphology of secretory ameloblasts is the
presence of the Tomes’ processes (276, 450, 592, 621),
triangular-shaped extensions of the cell found at the distal
end and penetrating into the enamel matrix, giving an
ameloblast monolayer a “picket-fence” appearance if
viewed on a histological section (276, 403). The Tomes’
process is important for exocytosing secretory vesicles and
also plays a role in determining boundaries between rod
and interrod regions (160, 403).

The precursors of the enamel crystals start to form during
the early secretory stage in a protein-rich extracellular en-
vironment that is maintained at near-neutral pH conditions
(316, 544). Thin hydroxyapatite-like (Hap-like) crystals
[sometimes referred to as either enamel ribbonlike struc-
tures (97) or enamel ribbons (236, 543)] grow almost ex-
clusively along their c-axis and elongate perpendicular to
the DEJ under the influence of EMPs, in a direction that is
finely coordinated with the movement of the ameloblasts
traveling away from the dentin (148, 403). Historically, it
was considered that initial formation of enamel crystallites
(i.e., nucleation) occurred within the enamel matrix (115).
However, some recent data have challenged this notion and
suggest that enamel crystal growth is initiated on mineral-
ized collagen fibers from the dentine (236, 543). These crys-
tals then extend through the DEJ to the ameloblast mem-
brane, and throughout the enamel (236, 543). Almost the
entire thickness and volume of enamel is laid down during
the secretory stage. It is a very soft tissue (gel-like) at this

point, comprised of similar amounts of EMPs, mineral, and
water by weight. Adjacent secretory-stage ameloblasts are
tightly opposed and are connected to each other by inter-
cellular junctional complexes on the lateral membrane at
both the proximal/basal and distal/apical poles (240, 403,
503, 504, 506). These junctional complexes can be either
tight, forming a beltlike and complete seal around the cell,
as is frequently observed at the apical membrane, or they
can be incomplete/leaky, as may be seen at the basal pole
(240, 403, 504). These junctional complexes of secretory
ameloblasts form a semipermeable barrier for intercellular
movement/diffusion of mineral ions from the circulation to
the enamel matrix (240, 579).

4. Transition stage

The transition from secretory to maturation is brief (228,
603) and, in the rat lower incisor, spans ~170 �m (541) or
~30–40 cell widths. During this brief transition, significant
morphological changes can be seen as ameloblasts become
shorter and lose their secretory Tomes’ process, and the PL
is formed (274). These changes are accompanied by dra-
matic changes in gene expression profiles (318, 527, 664).
The expression of EMP coding genes AMELX, AMBN, and
ENAM are downregulated during this transition, whereas
many other genes including those involved in ion transport,
proteolysis, and pH homeostasis are upregulated (234, 318,
615, 664). During the transition stage, ~25% of amelo-
blasts die (550), presumably from apoptosis, which may
result from the cells being in a metastable state due to cal-
cium overload (240).

5. Enamel maturation

Maturation-stage ameloblasts are shorter than secretory-
stage ameloblasts, being ~40 �m in height. The major func-

Connective tissue

Stellate reticulum

Outer enamel
epithelium

Stratum
intermedium

Papillary layer

Blood vessels

Ameloblasts

Tomes’ processes

Enamel and
Enamel space

Secretory stage Maturation stage

FIGURE 3. Secretory- and maturation-
stage ameloblasts. A: highly polarized se-
cretory ameloblasts (Am) with the Tomes’
process (TP) projecting into the forming
enamel front. B: shorter maturation amelo-
blasts. Connective tissue (CT), outer
enamel epithelium (OEE), stellate reticulum
(Sr), stratum intermedium (Si), and papil-
lary layer cells are also identified, as is the
enamel (En) or enamel space (ES) region
which is in contact with the distal/apical
pole of ameloblasts. Blood vessels (BV) can
also be seen in the folds of the papillary
layer cells.
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tions of the ameloblasts during enamel maturation encom-
pass many activities, including ion transport (541), acid-
base balance (316), EMP debris removal/endocytosis (313,
524), and apoptosis (318). To date, many of the molecular
mechanisms involved in ameloblast-directed enamel matu-
ration remain unclear (320). However, in the past decade
there have been significant contributions to the literature
highlighting the importance of ion transport and pH regu-
lation during enamel maturation (reviewed in Refs. 125,
320, 410).

Although crystal growth takes place during both the secre-
tory and maturation stages, it is during the maturation stage
that the crystals greatly expand in width and thickness,
giving enamel its characteristic durability and hardness
(541). To add complexity during the maturation stage,
ameloblasts change morphology in a unique series of mod-
ulations (cyclical changes) between a ruffle-ended (RA) ap-
pearance and a smooth-ended (SA) appearance in coordi-
nated groups, appearing as bands of similar morphology
across the circumference of the crown in an oblique fashion
(466, 622). SA waves appear at ~8.5-h intervals in rat inci-
sors, and these ameloblasts change after 2 h into RA cells,
reforming their characteristic cell specializations at the dis-
tal border (545). On average, the surface of a rat incisor in
any histological section shows ~70% of maturation amelo-
blasts in the RA phase and ~20% of maturation ameloblasts
in the SA phase (466). Transitional cells can also be identi-
fied (268). RA cells are characterized by a distinct distal
striated or ruffled border (468). RA cells are cytoplasmi-
cally polarized with a large concentration of mitochondria
proximal to the ruffle-border and supranuclear Golgi com-
plex (268). Intercellular spaces are noticeable along the lat-
eral region of RA cells, but these cells are tightly bound by
junctional complexes at their apical (distal) ends (167, 240,
403, 466), limiting the movement of small molecules into
the enamel space. RA cells are also associated with in-
creased endocytotic functions (313, 403, 498). In contrast,
SA cells show a complete absence of the distal ruffled border
(501). SA cells contain many lateral cytoplasmic projec-
tions, and they are bound at their basal ends by tight junc-
tions whereas the apical ends of the cells may have incom-
plete/leaky or absent junctional complexes (240, 313, 318,
403, 504, 536, 541). It is believed that this dynamic perme-
ability pattern allows bidirectional diffusion of small mol-
ecules into and out of the enamel via intercellular spaces
(269, 541).

To briefly summarize the distinct roles of RA and SA mat-
uration-stage ameloblasts, RA cells with their ruffled apical
membrane likely have greater capacity to transport ions
into and away from the enamel organ, and also to endocy-
tose the EMP debris. SA cells with incomplete junctional
complexes may allow for intercellular movements of fluids
that may in turn contribute to the neutralization of pH in
the enamel matrix (403). Although SA cells show little en-

docytotic activity (403), clathrin-coated vesicles and endo-
cytotic activity have been identified in both RA and SA cells
(499, 500, 505).

The RA to SA modulations play a role in pH regulation and
bicarbonate transport, which differ at each stage (316, 541,
581). Ameloblasts associated with the Ca2� chelator
glyoxal bis-2-hydroxyanil (GBHA) showed SA morphology
under a light microscope, indicating that neutral-alkaline
conditions dominate at this stage. Alternatively, it has been
proposed that extracellular pH conditions modulate the RA
to SA transitions (64). Others have shown that Ca2� entry
to the enamel increased during the RA stage (467).

Recent immunohistochemical analyses have reported a
number of differences in certain protein localizations be-
tween RA and SA ameloblasts. These include the anion
exchanger AE2 (a member of the SLC4 gene family) that is
differentially localized at the lateral or the basal part of the
lateral membrane of primarily RA cells, and in the same
location but to a lesser extent in SA cells (269). The expres-
sion of carbonic anhydrase-2 (CA2), an enzyme that is in-
volved in the local production of bicarbonate, is upregu-
lated in RA cells (269, 342). Protein subunits of the V-type
ATPase proton pump are fairly evenly distributed in the
cytoplasm of SA cells, but most highly concentrated at the
apical membrane of RA cells (269, 342, 495). These data
emphasize the greater capacity of RA cells to transport ions,
and to influence and control changes in the extracellular pH
during enamel maturation, although this is likely a simpli-
fied portrayal of the functions performed by each cell type.

C. Crystal Structure of Apatite

Calcium (Ca2�) and phosphate (PO4
3�) ions are only

sparsely soluble in water and thus precipitate at rather low
concentrations as a crystalline or amorphous solid (671).
Under physiological conditions, apatite has the lowest sol-
ubility among the calcium phosphate minerals and is there-
fore the most chemically stable mineral phase. Conse-
quently, apatite constitutes the inorganic component in all
sound mineralized tissues in vertebrate animals (120).

In saturated aqueous calcium phosphate solutions with
physiological range of pH (6.0 to 7.4), precipitation of stoi-
chiometric hydroxyapatite (Hap) can occur according to
the following reaction (Equation 1)

10Ca2� � 6HPO4
2� � 2H2O → Ca10�PO4�6�OH�2 � 8H�

(1)

Precipitation of one mole of Hap will result in the release of
eight protons, thus acidifying the solution and requiring
active pH regulation by ameloblasts as will be described
below.
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The unit cell (the simplest repeating unit) of Hap corre-
sponds to the chemical formula Ca10(PO4)6(OH)2 (289). Its
crystal lattice has hexagonal symmetry and comprises PO4

3�

tetrahedrae coordinated with Ca2� ions (FIGURE 4). There
are two types of Ca2� positions in the Hap-lattice, of which
Ca (2) is unique as it forms channels that allow anions to
move along the c-axis of the apatite crystal (FIGURE 4).
Hydroxyl ions are able to diffuse and be replaced by other
ions such as fluoride (F�), carbonate (CO3

2�), or chloride
(Cl�) from aqueous solutions. This makes apatite compo-
sition highly adaptable to its solution environment, which is
critical to its properties in biological apatites. Apatite crys-
tals in bones and teeth are far from being stoichiometric.
Instead, they are rich in defects and usually calcium-defi-
cient (120, 667). To maintain electron neutrality upon cal-
cium depletion, phosphate groups are protonated (HPO4

2�)
and/or phosphate groups are replaced with CO3

2�. Carbon-
ate ions can also replace two hydroxyl groups along Ca (2)
channels. The chemical reactions below describe the forma-
tion of a calcium-deficient carbonated apatite (Equation 2)
and a calcium-deficient carbonated hydroxyapatite (Equa-
tion 3)

9Ca2� � 6HPO4
2� � CO3

2�

→ Ca9�PO4�4�HPO4�2�CO3� � 4H� (2)

18Ca2� � 10HPO4
2� � 2CO3

2� � 4H2O
→ Ca18�PO4�8�HPO4�2�CO3�2�OH�4 � 12H� (3)

Carbonate substitutions for phosphate (PO4
3�) or hydroxyl

ions (OH�) affect the ideal crystal structure of apatite and
lower its symmetry, resulting in lower binding energies and

ultimately increase the chemical solubility of the mineral
phase (332). Carbonated apatite is therefore much more
susceptible to acidic dissolution and dissolves at pH around
5, which is readily produced by cariogenic (caries-produc-
ing) bacteria. In contrast, F� fit perfectly between Ca (2)
triangles and stabilize the hexagonal symmetry and crystal
lattice. Exchange of CO4

3� for F� therefore lowers the sol-
ubility by at least three orders of magnitude, and fluoroapa-
tite can withstand a pH as low as 4 without dissolution.
This partly explains the high benefit of fluoride supplements
in toothpastes and drinking water for caries prevention and
erosion reduction in teeth (393, 451, 671).

IV. EVOLUTIONARY ORIGINS OF ENAMEL
AND ENAMEL MATRIX PROTEINS

The evolution of enamel is tied to the appearance of teeth
and in general with the development of skeletonized struc-
tures. Early vertebrates during the Cambrian period show
mineralized structures in the oropharynx that were used for
feeding, and which are likely related to the origins of teeth,
although they were composed of a carbonated material dis-
similar to enamel (286). These structures are comparable to
pharyngeal teeth found in modern fish (teleosts). Some
modern fish (e.g., hagfish and lampreys) show structures
resembling teeth, but these are cartilaginous and, unlike
true teeth, derive from ectomesenchyme rather than ecto-
derm (244). Modern vertebrate teeth may have evolved
from oropharyngeal denticles or from dermal denticles such
as those found in sharks. However, shark teeth (and their
dermal denticles) are formed from enameloid, which con-
tains a large component of collagen, unlike true enamel.
Reptiles also have teeth, but unlike mammals, reptilian
enamel lacks a rod/interrod (prismatic) structure. Mammalian
enamel has a highly organized prismatic structure that forms
as described in section IIIB (FIGURE 5). The prismatic or rod/
interrod architecture seen in mature mammalian enamel can
be appreciated in FIGURE 6. Mammalian enamel is rather het-
erogeneous in its microstructure, even within the same species.
For example, rodent incisor and molar microanatomy differ,
which has been ascribed to different functional requirements
by each tooth type during mastication (185, 297, 354, 472,
473). Also of note is that with the introduction of interdigita-
tung rods, which are angled to apatite fibers in the interrod
enamel, crack resistance is increased (198), while fracture
toughness of prismatic mammalian enamel is about double
that of prismless reptile enamel (663).

The origin of the main structural proteins secreted by
ameloblasts, AMELX, AMBN, ENAM, and the relatively
newer amelotin (AMTN) and odontogenic, ameloblast-as-
sociated protein (ODAM), dates back to over ~600 million
years ago (532). They are all members of the secretory
calcium-binding phosphoprotein (SCPP) gene family derived
from the ancestral SPARC/Osteonectin gene (482). ENAM
appears to be the original protein from which the others, in-

FIGURE 4. Crystal structure of calcium phosphate apatite shows
hexagonal symmetry. Two types of calcium sites are indicated, with
Ca (2) sites in triangular configuration (yellow and red lines) creating
channels along which ions can move (green). Anions (green) such as
OH�, Cl�, CO3

2�, or F� can fill sites in the channels. F�, the smallest
of these species, can fit within the triangle created by the Ca sites
forming the channel; larger anion species deform the lattice signifi-
cantly when occupying these sites, leading to a reduced lattice
stability and therefore higher solubility.
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cluding AMBN, are derived. AMELX, the most abundant ma-
trix protein, arose via gene duplication from AMBN (532).
Additional information on the evolution of SCPP genes, and
their role in tooth formation, can be found in a number of
recent papers (104, 169, 170, 280–288, 532–534).

The human genome contains two amelogenin genes, one
located on the X chromosome (AMELX: locus Xp22.3-
p22.1) and the second on the Y chromosome (AMELY:
locus Yp11) (325, 492, 496). Both the X and Y amelogenins
are expressed in males; however, the X-chromosome-de-
rived amelogenin is expressed at significantly higher levels
(492). It is estimated that �90% of the amelogenin gene
transcripts in male primates are derived from the X chro-
mosome (103, 428, 492). The close proximity of
SPARCL1, AMBN, ENAM, AMTN, and ODAM on the
human chromosome 4q13-q21.1 has resulted in detailed
investigation of this chromosome region by enamel re-
searchers as it hosts genes responsible for inherited dental
diseases (94, 165, 228, 561, 641). This region contains
many of the genes responsible for the mineralization of hard
tissues (285, 287, 288, 532, 534).

For significance, since amelogenin is expressed on both the X
and Y chromosome in some mammals such as primates, cow,
pig, horse, and sheep (175, 209, 256, 325, 400, 448, 462,
492), the nucleotide differences between the X- and Y-derived
amelogenins allow for quick, PCR-based, sex determination in
utero, or in forensic medicine (129, 159, 428, 611).

V. ENAMEL MATRIX PROTEINS AND
WHAT WE HAVE LEARNED FROM
ANIMAL MODELS

A. Overview

The most abundant of the secreted structural proteins of the
enamel matrix are amelogenin (AMELX), ameloblastin

(AMBN), and enamelin (ENAM) (228, 428, 430). While
some studies have suggested that AMELX (112, 196, 211)
and AMBN (152, 557) are expressed in nondental tissues in
nonpathological states, there is wide consensus that all
three proteins are most highly expressed in the enamel or-
gan. Moreover, Amelx (178), Ambn (164), and Enam (230,
231) mutant mice show pathologies that appear to be lim-
ited only to the dental enamel, suggesting that the levels and
biological roles of these two proteins in nondental tissues
are negligible. Our current understanding is that AMELX,
AMBN, and ENAM are the major secreted products of
secretory-stage ameloblasts, while AMTN and ODAM are
secreted by maturation-stage ameloblasts.

It has been estimated that amelogenin proteins contribute
~90% of the enamel organic matrix, based on both protein
analyses and unbiased RNA and protein profiling (67, 305,
364, 475, 530, 591). AMBN composes ~8–10% of the
enamel organic matrix (369), while ENAM appears to be
present in trace amounts only (66, 369). These figures for
relative protein levels also appear reasonable when looking
at mRNA levels; for example, mRNA profiling from a rat
enamel organ demonstrated that 20.0% of all gene tran-
scripts were to Amelx and 2.9% of gene transcripts were to
Ambn (305, 364). At the time of this study the “ameloblas-
tin” mRNAs identified were to an unknown gene, and des-
ignated as only as clones Y224, Y243, and Y275 (364), but
further characterization resulted in the cloning of a full-
length Ambn transcript, and the subsequent naming of this
gene (305).

Knockout or mutant mouse models for all these enamel-
specific genes have been generated and all appear healthy
and are fertile. The enamel of Amelx (180), Ambn (164),
and Enam (230) mutant mice are severely impacted, show-
ing disorganized enamel; these mice require a soft diet be-
cause the occlusal surfaces of their teeth wear easily. The
Amtn and Odam mutant mice show either only a mild

FIGURE 5. Transmission electron micrographs (TEM) of early enamel development. TEM images of the
mouse showing early enamel formation. A: ameloblast Tomes’ process (TP; right) surrounded by enamel
crystallites seen adjacent to the dentino-enamel junction (DEJ; broken line) that is located diagonal to
frame, and with pre-dentin (PD; unmineralized dentin) to the left. Scale � 1 �m. B: initial enamel crystallite
formation for the first 1–1.5 �m (shown in panel). TP, PD, and DEJ (broken line) are also identified.
Scale � 0.2 �m. C: this panel shows a higher magnification of the DEJ area very early in enamel crystallite
formation. Scale � 200 nm.
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phenotype (Amtn-null mice) (402) or no apparent pheno-
type (Odam-null mice) (623).

B. Amelx Mutant Mice

Amelogenin (AMELX), first identified in 1983, has been the
most studied of the enamel-specific proteins (553, 555). It
was the first enamel-specific cDNA subclone to which a
protein sequence could be identified (555), and specific
antibodies against mouse Amelx were subsequently gen-
erated (537). AMELX assembles into multimeric units in
vitro and possibly the extracellular space (151) that are
widely referred to as “nanospheres” (51, 58, 79, 124,
136, 137, 148, 345, 493, 588). A number of three-dimen-
sional models have been proposed for the assembly of
amelogenin into nanospheres (124, 136, 138, 212, 389),
and while these models vary in detail, all suggest that

nanospheres are of the order of 20 –30 nm in diameter
and may contain ~12 (136) or more (124) amelogenin
monomers.

A conventional targeted knockout approach produced
Amelx-null mice, which had a dramatic phenotype limited
to the enamel organ (178). While a thin layer of enamel was
observed in these mutant mice, it lacked any prismatic ar-
chitecture, and the thickness was ~20% (i.e., 1/5) that of
normal enamel (177, 178). In addition, in the Amelx-null
mice, the dimensions of individual enamel crystallites were
smaller than in wild-type enamel (652).

Another feature of amelogenin gene products is the large
number (�15) of alternatively spliced isoforms that have
been identified based on mRNA profiling (26, 516, 528,
529, 653). Of these spliced isoforms, the most abundant in

FIGURE 6. Scanning electron (SE) micrographs of mouse enamel. A: bundles of single Hap crystals can be
seen forming tubular structures known as enamel prisms or enamel rods. Each ameloblast is responsible for
the formation of one enamel rod. These rods are the basic structural units of enamel. The architectural
patterning of the rods forms the microstructure. Scale � 2 �m. B: enamel microstructure in a cross section
of a mouse incisor. Scale � 10 �m. C: close up of outer incisor enamel in back-scattered SE mode showing the
change in organization of the rods as the Tomes’ process is lost (top of image). At this point, the enamel
microstructure loses the rod-interrod patterning. Scale � 2 �m. D: mouse molar enamel (same animal as in
A) showing the complexity of its microstructure which reflects the movement of ameloblasts and how different
tooth types may vary in microstructure. Inner enamel reflects strong decussation (crossing of ameloblasts
along various planes as they move) but in the outer enamel (top of image) ameloblasts move in straight paths.
Scale � 10 �m. E: close up of inner enamel showing the strong decussation of the enamel rods in this tooth.
Scale � 10 �m. (All SE images by Timothy G. Bromage and Rodrigo S. Lacruz.)
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mice is referred to as M180, followed by the leucine-rich
amelogenin peptide (LRAP) (176, 179, 326, 391, 529, 656)
(FIGURE 7). Transgenic mice overexpressing either M180 or
LRAP in the enamel organ have been generated and bred
with the Amelx-null mice, and this has resulted in varying
degrees of rescue of the enamel deficiencies, partially restor-
ing both the prismatic architecture and crystallite dimen-
sions (177, 652). M180 knockin mice show a normal
enamel function and architecture as observed by electron
microscopy (EM); however, the mechanical properties of
the enamel were altered such that the hardness increased by
7%, and the fracture toughness decreased by 22% when
analyzed by microhardness tests (556). Hardness has been
considered as a surrogate for wear resistance, while tough-
ness is a measure for fracture resistance (154, 556, 634).
This M180 knockin mouse suggests that the inclusion of the
other amelogenin spliced isoforms may contribute to the
overall functional and structural properties of enamel under
normal circumstances.

Additionally, a number of transgenic mouse lines have been
created to study the disruption of amelogenin self-assembly.
Prior studies using the yeast two-hybrid system have shown
that the M180 amelogenin proteins self-assemble, thanks to
the amino-terminal 42 residues (the so-called A domain)
interacting either directly or indirectly with a 17-residue
domain (the so-called B domain) in the carboxy region
(427) (FIGURE 7). Transgenic mice bearing mutant ameloge-
nin transcripts that lack either the A or B domain show
disruptions to the crystallite orientation and prismatic ar-
chitecture (126, 425, 431).

The primary conclusion from all of the amelogenin mouse
models is that while amelogenin is not responsible for hy-
droxyapatite (Hap) nucleation or growth, it is essential for
normal and controlled enamel crystallite growth and crys-

tallite orientation on the nanoscale, and rod/interrod or
prismatic architecture on the microscale (652).

C. Ambn Mutant Mice

Ameloblastin was first identified around 1996 by three in-
dependent research groups, and given the names ameloblas-
tin (305), amelin (72), and sheathlin (227). Current nomen-
clature refers to this gene as ameloblastin (AMBN). An
ameloblastin (Ambn) mutant animal model was generated
in 2004, and at the time was thought to be a complete
knockout/silencing of any ameloblastin expression (164).
However, it was later shown that this line expressed only a
truncated version of ameloblastin missing exons 5 and 6
(624). This mouse model did have a severe dental pheno-
type (164). The ameloblasts differentiated to polarized se-
cretory ameloblasts but then quickly detached from the
enamel matrix and lost their polarity, resulting in the ter-
mination of amelogenesis and the failure to produce any
enamel. These data suggest that ameloblastin plays a role in
cell-matrix attachment and the maintenance of the amelo-
blast differential state (164). These Ambn-mutant mice
have been bred with a transgenic mouse that overexpresses
ameloblastin in the enamel organ, and the resulting enamel
appears normal (90), suggesting a complete or near-com-
plete rescue of the enamel phenotype.

D. Enam Mutant Mice

Enamelin was first identified in 1997 (226), and the first
publication of the Enam-null mice, referred to as the Enam
knockout NLS-lacZ knockin, was in 2008 (230). In addi-
tion to achieving a complete elimination of any Enam ex-
pression, the targeting vector included a lacZ (�-galactosi-

FIGURE 7. Mouse amelogenin (Amelx) protein-protein interacting domains. The protein sequence of the
most abundant Amelx isoform is shown in A (REFSEQ accession number NM_009666.4). The mature protein
(after the signal peptide shown in red is removed) contains 180 amino acids and is frequently referred to as
mouse M180 isoform. Domains A and B were defined using the yeast two-hybrid system. Interacting domains
A and B are identified and underlined. The leucine-rich amelogenin peptide (LRAP) is the second most abundant
amelogenin produced as a product from alternative splicing and is shown in B (without its signal peptide). This
LRAP isoform contains the NH2-terminal 33 amino acids and the COOH-terminal 26 amino acids of the
sequence in A. This LRAP isoform has been referred to as either LRAP, or the mouse M59 isoform. The “#”
indicates the spliced union of the NH2- and COOH-terminal regions in LRAP.
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dase) reporter with a mouse nuclear localization signal
(NLS) (229, 230). Enam�/� mice showed no “true enamel”
(230) based on various imaging techniques (e.g., radiogra-
phy, microcomputed tomography, and light and scanning
electron microscopy); instead, a “thin, highly irregular,
mineralized crust covered the dentin on erupted teeth”
(230).

E. Amtn Mutant Mice

Amelotin (AMTN) was first identified in 2005 (255). Amtn-
null mice have also been generated and studied recently
(402). In these Amtn mutant mice, the enamel prismatic
structure appeared unaltered; however, enamel mineraliza-
tion was delayed, resulting in hypomineralization of the
inner enamel and structural defects in the outer enamel
(402).

F. Odam Mutant Mice

The odontogenic, ameloblast-associated gene (ODAM) was
identified in 2006 and initially referred to as APin (385).
Odam-null mice have recently been generated (623). This
mutant line is a complete knockout with a functional inser-
tion of the �-galactosidase gene with an amino-terminal
nuclear localization signal (NLS-LacZ). In these mutant
mice, the spatiotemporal expression of �-galactosidase re-
lates directly to (i.e., copies) the Odam expression pattern,
which is limited to late secretory-, transition-, and matura-
tion-stage ameloblasts, and is also expressed in the cells of
the dental junctional epithelium (JE) (386, 406, 623). The
JE is the region where the oral epithelium unites with the
tooth surface, thus forming a unique barrier or seal between
the oral cavity and the underlying tissues (403, 407). These
Odam-null mice have no observable enamel phenotype
(623), but as they age there is an increased inflammatory
infiltrate in the JE, and an apical down-growth of the JE
typical of periodontal disease (407, 623). These findings
suggest that ODAM expression in the dental JE helps main-
tain the integrity of the JE attachment (407, 623). It is
therefore tempting to speculate that pathological mutations
to Odam may increase the risk of periodontal disease.

VI. ENAMEL MATRIX ASSEMBLY

A. Amelogenin Self-Assemblies

The enamel matrix is composed primarily of three secreted
structural proteins: AMELX, AMBN, and ENAM (359,
389, 430). AMELX has a single phosphorylated serine lo-
cated at the amino-terminal region (149, 578). AMBN and
ENAM are both glycoproteins (72, 153, 226, 305, 658) and
likely account for reports indicating the existence of pro-
teoglycans in the forming of the enamel matrix (77, 184,

190). Biglycan (BGN) has also been shown to be expressed
in secretory ameloblasts, but at barely detectable levels
(189). There have also been reports that phospholipids con-
tribute to the enamel matrix (459, 514, 515). However, if
these phospholipids are indeed extracellular (186), then it is
unclear what role they play in amelogenesis.

Likely because amelogenin was the first enamel matrix pro-
tein cloned, and because of its abundance, most of the lit-
erature related to enamel matrix assembly has focused on
amelogenin self-assembly properties (147, 148, 390, 423,
674). Transmission electron microscopy (TEM) of mouse,
bovine, and hamster dental enamel tissues showed electron-
lucent spherical structures/aggregates of (presumably)
amelogenin that aligned with long axes of developing
enamel crystallites (147, 148). In vitro studies confirmed the
formation of amelogenin nanospheres with 10- to 15-nm
radii (20–30 nm diameter) using native or recombinant
amelogenins in aqueous solutions (150, 151). Further stud-
ies by Paine et al., using the yeast two-hybrid system and a
series of systematic amino-terminal and carboxy-terminal
deletions of a full-length Amelx, suggested that self-assem-
bly of amelogenin occurs via two well-defined domains re-
ferred to as the amino-terminal “A” domain and the car-
boxy-region “B” domain (427, 431) (FIGURE 7). Such
Amelx-Amelx binding domains would allow for the forma-
tion of nanospheres containing clusters of amelogenins, and
hydrophobic and hydrophilic constraints could help define
their shape and size. It is because of these self-assembly
properties of Amelx and its hydrophobic character that it is
only sparingly soluble in physiological conditions, and re-
quires extreme pH conditions to show significant dissolu-
tion (340, 427, 523). In vitro, using recombinant ameloge-
nins, self-assembly into nanospheres is a phenomenon that
can occur at physiological or near-physiological pH values
(pH range of 7.2–7.7) (40, 630, 636), but only in the ab-
sence of Ca2� and PO4

3� (212, 361, 362, 493) (FIGURE 8).
Nanospheres disassemble in the presence of mineralizing
ions and appear to attach to apatite surfaces as monomers
or dimers (162, 212, 361, 362). It also seems that as soon as
amelogenin is secreted into the extracellular space in vivo, it
is processed by MMP20 into specific cleavage products with
unknown functions. Ultimately amelogenin is severely hy-
drolyzed by KLK4 and the resulting peptide debris is re-
moved from the enamel matrix through endocytosis (29,
348). There are reports that in vitro amelogenin may form
microribbons a few micrometers in width and hundreds of
micrometers long (124, 388, 389), although this remains
controversial (123, 124).

While the general consensus has been that the supramolecu-
lar structures in the enamel matrix are critical to controlling
the organization of apatite crystals in enamel (150, 338,
430, 431, 527), recent observations of nanoribbons devel-
oped from full-length AMELX proteins with the ability to
self-organize challenge this paradigm (FIGURE 8). Ameloge-
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nin nanoribbons from recombinant human proteins form
over a period of days. They are ~17 nm wide and align
parallel to each other, maintaining a 5- to 20-nm space
between them (212, 361). Bundles of aligned AMELX na-
noribbons up to 100 �m in length develop over a period of
1–3 wk, producing an organic scaffold that mimics the ap-
pearance of apatite nanofibers in an enamel rod (70, 361,
362). This suggests that aligned AMELX nanoribbons may
be a precursor to enamel rods and provide a template for
guided apatite crystal growth (198). Interestingly, self-as-
sembly of AMELX into nanoribbons is dependent on Ca2�

and PO4
3�. These mineralizing ions build ion bridges be-

tween AMELX dimers and thus stabilize the formation of
anti-parallel �-sheets comparable to amyloid fibers known
from neurodegenerative diseases (70, 493). This in vitro
observation is in agreement with X-ray diffraction analyses
of developing enamel, showing evidence of cross-� struc-
tures characteristic of amyloids (182, 266, 442, 446). The
presence of a functional amyloid was further supported by
positive staining for Congo Red in enamel of Klk4�/� mice
(70). High-resolution images are often dominated by fila-
mentous structures that have been attributed to the early
apatite crystal ribbons that develop during secretory stage
but remain present even when the specimen is demineral-
ized (596).

A major difficulty in deciphering the exact mechanisms of
protein-controlled mineralization lies in the transient na-
ture of the enamel matrix, which is rapidly processed soon
after secretion and is almost completely removed by the end
of the mineralization process. Further analysis of the bio-
logical structures in the developing matrix and revision of
current models of amelogenin-guided mineralization are
warranted. Models of amelogenin nanosphere formation
and nanosphere-crystallite interaction have been widely
used in the enamel research community and have been re-

viewed by others (387). A comparison of the nanosphere
model (662) to a model based on new data on in vitro
nanoribbon assemblies and how they might guide crystallite
growth is presented in FIGURE 9.

B. Other Protein-Protein Interactions of the
Enamel Matrix

Ameloblastin has been suggested to be a cell adhesion mol-
ecule that can influence ameloblast growth and differentia-
tion (164). Observations from Ambn-mutant mice showed
that in the absence of a fully functional Ambn protein,
presecretory ameloblasts could differentiate into polarized
secretory cells, but these cells quickly detached from the
forming enamel matrix to form multicell layers that occa-
sionally (~20% of mice) proceeded to form odontogenic
tumors (164). Some reports have also suggested AMBN
may act as a signaling molecule or a growth factor (38, 152,
587, 670). Using a bacterially generated recombinant hu-
man AMBN, Wald et al. (612) have shown that, similar to
AMELX, AMBN under certain nonphysiological condi-
tions can form flat ribbon-like supramolecular structures
(width and thickness of ~18 nm and 0.34 nm, respectively)
and of varying length. It should be noted that eukaryotic-
generated AMBN is present as a glycosylated protein, but
this naturally occurring glycoprotein cannot be produced
from bacteria; the self-assembly property seen in vitro may
not recapitulate in vivo events. Of note also is that earlier
studies by Paine et al. (422), using the yeast two-hybrid
system, suggested that a eukaryotic-generated mouse Ambn
had no self-interacting properties, questioning further
whether Ambn ribbons may be present in vivo. These data
shed some light on the role of AMBN in enamel formation,
but the exact role remains unclear. What we do know is that
Ambn mutant mice fail to produce any enamel, or indeed

FIGURE 8. Micrographs of amelogenin assemblies. Micrographs of recombinant full-length amelogenin
protein assembled in vitro without calcium and phosphate ions (A) and with addition of Ca2� (30 mM) (B) and
PO4

3� (22 mM) (C). In the absence of mineralizing ions, amelogenin forms nanospheres with diameters
between 15 and 30 nm (A). With the addition of calcium and phosphate ions, nanospheres disintegrate and
at pH between 4.0 and 6.5 transform into nanoribbons over periods of days (B). Ribbons measure ~17 nm in
width and are ~3–4 nm thick. The ribbons have a tendency to align themselves into parallel arrays and form
bundles (C) that can reach several 10 s of micrometers in length. [C from Martinez-Avila et al. (361). Copyright
2012 American Chemical Society.]
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any mineralized tissue, from the enamel-producing cells
(164).

A number of studies have investigated self-assembly prop-
erties of the different secreted enamel proteins and protein-
protein interactions between them. As discussed above, us-
ing the yeast two-hybrid system, amelogenin-amelogenin
interactions could be demonstrated (422) and interacting
domains identified (427). In a paper by Holcroft and Ganss,
also using the yeast two-hybrid system and cloned bovine
enamel matrix protein sequences, it was shown that full-

length AMTN could self-assemble, as could full-length
ODAM, and ODAM could also interact directly with
AMTN and AMELX (220). There is also one report, using
in vivo-derived porcine enamel proteins, that suggested
amelogenin interacts with the 32-kDa fragment of ENAM
(659). Enam-null mice lack the formation of a mineralized
layer, supporting the notion that ENAM may be critical to
apatite nucleation (230). Similar to mineralizing collagen
fibrils in bone and phosphoproteins in dentin, a mechanism
of protein interaction can be suspected where an acidic or
phosphorylated protein may act as a carrier, delivering min-

FIGURE 9. Proposed models of amelogenin-directed growth of apatite mineral during secretory stage of
amelogenesis. Comparison of two models of amelogenin-directed growth of apatite mineral during secretory
stage of amelogenesis. A: nanosphere model. Amelogenin protein is secreted into the extracellular space and
assembles into nanospheres. Amelogenin stabilizes prenucelation clusters of calcium phosphates. Nano-
spheres align into chainlike structures along which amorphous calcium phosphate develops and through a
ripening process transforms into crystalline Hap. Nanospheres act as spacers, as originally proposed by
Fincham et al. (150). [A from Yang et al. (662), copyright 2010 American Chemical Society.] B: nanoribbon-
directed crystal growth. Amelogenin is secreted from vesicles, possibly in the form of antiparallel dimers.
Nanoribbon assembly is triggered by formation of ion bridges across dimers with Ca2� and PO4

3�. Dimers are
added to the existing amelogenin ribbons as soon as they are exocytosed and thus elongate the ribbons as the
ameloblasts migrate away from the mineralization front. Hap mineral forms at a narrow distance from the cell
membrane in form of thin ribbons that develop on the backbone of the protein ribbons. Full-length amelogenin
does not induce mineral formation directly, and the mechanism of mineral nucleation is not known. Interaction
with other non-amelogenin molecules and/or the processing by MMP20 may be required for guided growth of
apatite onto amelogenin ribbons.
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eral ions to nucleation sites on self-assembled protein scaf-
folds. In a similar fashion, ENAM may interact with
AMELX supramolecular structures. However, work on the
protein-protein interactions of the less abundant enamel
matrix proteins remains in its infancy.

There have been two reports of either AMELX or ENAM
interacting with members of the collagen family (111, 614),
suggesting that AMELX interacts with COL1A1 (111) and
COL5A3 (614), and that ENAM interacts with COL2A1
and COL5A1 (614). Collagens are a product of odonto-
blasts and present in dentin, while the amelogenins are a
product of ameloblasts and found in the enamel. It has been
shown that type IV collagen is expressed directly at the DEJ
(371), and that type 1 collagen (341) and type VII (372)
collagen pass from the dentin through the DEJ and into the
enamel. The significance of such amelogenin-collagen or
ENAM-collagen interactions, or the extension of dentin
collagens into the inner enamel matrix, could help explain
the significance and unusual structural and biomechanical
properties of the DEJ (249, 371, 430, 633, 635). The DEJ is
a unique structure of the tooth that functions to hold the
enamel onto the dentin surface (34, 75, 166, 403, 635).
While the DEJ is a critical component of the tooth, the
biology and developmental mechanisms involved in its for-
mation are not well understood and are beyond the scope of
this review.

VII. ENAMEL-SPECIFIC PROTEOLYTIC
ENZYMES

A. Overview

Although a number of proteinases have been described in
amelogenesis, including matrix metallopeptidases 2, 3, and
4 (MMP2, MMP3, and MMP9) (187, 199), chymotrypsin
C (CTRC) (322) and cathepsin C (CTSC, also known as
dipeptidyl peptidase I) (601), most of the information on
proteinase expression during amelogenesis relates to
MMP20 (formerly known as enamelysin) and kallikrein-
related peptidase 4 (KLK4) (27, 30, 235, 348). MMP20
expression dominates during the secretory stage (28, 29, 56,
233), and KLK4 expression during the maturation stage
(29, 232, 233, 348). Two noteworthy reviews on enamel
proteinases have been published (25, 348). Autosomal re-
cessive forms of nonsyndromic amelogenesis imperfecta
(AI) have been documented for mutations associated with
both MMP20 and KLK4, and mutant animal models attest
to the important role both enzymes play in amelogenesis.

B. Mmp20 Mutant Mice

Mmp20-null mice were first reported in 2002 (71), and
work on this animal model continues today (454, 521).
These mice have a severe phenotype, with the enamel being

hypoplastic and delaminating from the dentin soon after the
tooth erupts into the oral cavity (71). The ameloblast mor-
phology is clearly disrupted early during secretory-stage
amelogenesis, and the normal rod-interrod pattern of fully
formed enamel is also disturbed (71). Thus it is clear that
MMP20 is critically important not just for proper enamel
formation, but also for the integrity of the DEJ. Amelogen-
ins form the bulk of the enamel matrix (29, 103, 428, 492);
thus AMELX is seemingly an obvious substrate for MMP20
in the developing enamel. Multiple in vitro studies, using in
vivo-derived or recombinant proteins, have confirmed that
AMELX is indeed a major substrate of MMP20, suggesting
this is also the case in vivo during amelogenesis (344, 488,
524, 656). MMP20 has also been shown to effectively
cleave AMBN in vivo (91, 257). It is unclear today how the
third major enamel protein, ENAM, is processed and de-
graded post-secretion (25, 657).

C. Klk4 Mutant Mice

Klk4-null mice were first reported in 2009 (525) and
showed an enamel hypomaturation phenotype (normal
thickness but poorly mineralized) that, post-eruption, ei-
ther quickly abrades, or fractures just above the DEJ (525).
This suggests that KLK4 plays no role in the integrity of the
DEJ. Although a rod-interrod morphology could be ob-
served in Klk4 mutant mice, individual enamel crystallites
failed to pack tightly with neighboring crystallites, and gave
the impression that they “spilled out” following controlled
enamel fracture (525). KLK4 has broad substrate specificity
and readily degrades the known enamel matrix proteins
(348, 399). KLK4 expression in the mouse incisor starts
during the transition stage and continues throughout the
maturation stage; thus mice that do not express Klk4 retain
much of the enamel organic matrix, resulting in hypomin-
eralized enamel (525, 660).

VIII. RESORPTIVE ACTIVITIES IN
AMELOGENESIS

A. Overview of Endocytotic and Other
Resorptive Processes

Endocytosis can be either receptor mediated or fluid phase
(4, 541), with receptor-mediated endocytosis most typically
defined as a clathrin-dependent process (4). This is in part
because the endocytotic cellular uptake of extracellular pro-
teins frequently involves clathrin assemblies and clathrin
adaptor protein (AP) complexes that are generally activated
and assembled by a membrane-bound receptor-mediated
event such as ligand binding. Fluid-phase endocytosis in-
volves multiple, relatively low-energy and nonspecific, cel-
lular activities that allow for the uptake of fluids from the
extracellular environment, and do not appear to be initiated
by receptor-ligand activities (9, 119, 291). Fluid-phase en-
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docytosis involves a number of molecular activities of clath-
rin-independent pathways, including the CLIC/GEEC en-
docytotic pathway, the arf6-dependent pathway, flotillin-
dependent endocytosis, micropinocytosis, circular doral
ruffles, phagocytosis, and trans-endocytosis (119). As the
molecular mechanisms for each of these fluid-phase activi-
ties are being better defined, it has become clear that they
have some specificity as to what molecules and extracellular
debris they each target for cellular uptake (9, 49, 119, 291,
327, 404).

B. Early Concepts of Resorptive Activities of
the Enamel Organ

Endocytotic activities in amelogenesis have not been exten-
sively studied. However, on the basis of EM observations,
papers of the late 1970s and early 1980s described coated
pits and/or vesicles on the cytoplasmic surface of the apical
pole of ameloblasts in both the secretory (160, 499, 500)
and maturation stages [including both the smooth-ended
(505) and ruffle-ended (498) phases] of amelogenesis.
Clathrin was first discovered in 1976 associated with coated
vesicles (443); thus the coated pits and vesicles described in
these earlier enamel studies likely represent the clathrin-
coated vesicles that are recognized today (313). Other ear-
lier studies relating to the active and passive resorptive func-
tions of ameloblasts have recently been discussed by Lacruz
et al. (313), and the reader is referred to this paper for a
historical perspective and relevant citations.

C. Adaptor Protein Complex 2 (AP-2)
Endocytosis in Amelogenesis

Earlier EM observations in the 1970s and 1980s of coated
pits and/or vesicles forming on the inner surface of amelo-
blast cells (160, 498–500) were suggestive of clathrin-asso-
ciated endocytotic activities being a feature of amelogene-
sis, and more recently published immunolocalization and
real-time PCR data indicate the same conclusion (313). La-
cruz et al. (313) clearly established that active, AP-2 medi-
ated, clathrin-dependent endocytosis occurs during amelo-
genesis and that during amelogenesis the greatest expres-
sion of AP-2 and clathrin is noted at the apical poles of
maturation ameloblasts.

AP-2-mediated endocytosis is a clathrin-dependent activity
and is widely considered to be receptor-mediated (324,
584–586). Known receptors include transferrin receptor
(Tfrc), the low-density lipoprotein receptor (Ldlr), and the
epidermal growth factor receptor (Egfr) (50, 368, 394).
When comparing the transcriptomes enamel organ cells in
the rat incisor, it was noted that Tfrc transcripts increased
significantly (�60-fold) from the maturation to the the se-
cretory stage (319, 664). It has also been shown that the
iron transport protein transferrin (Tf) is a potential protein

binding partner of Enam (614). Although significantly more
work is required in this field, it is reasonable to suggest that
the removal of the enamel matrix debris could occur
through direct protein-peptide interactions between Tf and
the EMP debris, resulting in an EMP/Tf/Tfrc-initiated AP-2
endocytotic pathway (313). This scenario is feasible as mul-
tiple protein partners of Tf, in addition to enamelin, have
already been identified; these include the GABA(A) recep-
tor-associated protein (Gabarap) (195), leukocyte cell-de-
rived chemotaxin 2 (Lect2) (82), insulin-like growth factor
1 and 2 (Igf1 and Igf2) (566), and insulin-like growth factor
binding proteins 1–6 (Igfbp1-6) (629).

Lamp1, Lamp2, and Cd63 have individually and collec-
tively been suggested as possible membrane-bound protein
receptors initiating the AP endocytotic pathway by direct
interaction with the various AP complexes (43, 50, 223,
444, 480, 483). LAMP-AP complex formation and the sub-
sequent trafficking of Lamp1, Lamp2, and Cd63 from the
cell membrane to the lysosome is initiated by a direct pro-
tein-protein interaction between a lysosomal targeting mo-
tif (GYXXA; where X is any amino acid and A is a bulky
hydrophobic amino acid) located at the cytoplasmically
contained carboxy terminus of all three LAMPs (Lamp1,
Lamp2, and Cd63), and the mu/� subunit of AP-2 (Ap2m1)
(113, 223, 248, 324, 452, 483). Zou et al. (675) have pre-
viously shown that Amelx, through a proline-rich region
(PLSPILPELPLEAW), interacts directly with Lamp1,
Lamp2, and Cd63 through an extracellular 20-amino acid
domain with high homology common to all three LAMP
proteins. In Cd63 this binding domain is contained within
the externalized “EC2” domain (675). This proline-rich
Amelx binding region is hydrophobic, largely disordered,
and accessible to the external environment (675). The
externalized EC2 domain of Cd63 also interacts with
full-length Enam and Ambn (614, 675); thus it is feasible
that the LAMP proteins could act as ameloblast receptors
for AP-2, clathrin-dependent endocytosis, but this needs
further investigations. A schematic of the two scenarios
presented for EMP initiated endocytosis is presented in
FIGURE 10.

Another established pathway for the uptake of Tf located at
the apical pole of some polarized epithelia (e.g., the small
intestine, renal proximal tubule, visceral yolk sac, and pla-
cental cytotrophoblasts) is through the megalin-dependent
cubilin-mediated endocytotic pathway (87, 88, 304, 384,
489), although to date there are no published data suggest-
ing that this endocytotic pathway is active in the enamel
forming cells (313, 318, 319).

D. Summary

Recent data indicate that AP-2-mediated, clathrin-depen-
dent endocytosis is a prominent feature of maturation-stage
amelogenesis (313), and while other resorptive processes,
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such as micropinocytosis, may also be active in amelogen-
esis, they are yet to be investigated at the molecular level.
The process of enamel matrix removal is a significant topic
worthy of investigation because the failure to properly re-
move the organic enamel matrix results in a hypomineral-
ized enamel that is mechanically inferior and wears and
fractures rapidly, as seen in Mmp20-null and Klk4-null
mice (71, 525, 660).

IX. IMPORTANCE OF pH MAINTENANCE

A. Regulation of pH

Nucleation events leading to the development of enamel
crystals require the formation of a stable cluster of ions that
can organize and grow (127). For every unit cell of hy-
droxyapatite crystal, approximately eight H� protons are
released into the extracellular environment, thus lowering
the pH in the immediate surroundings (541). This calcula-
tion is based on the stoichiometric equation shown in Equa-
tion 1 (above) (523, 541). To modulate the effects of these
free protons, enamel cells use active bicarbonate (HCO3

�)
transport systems to regulate the extracellular pH (269,
316, 317, 429, 541, 542). Here we describe changes in pH
during amelogenesis and review key components of the
HCO3

� transport system.

B. Changes in pH During Amelogenesis

Much of the available data on pH in enamel derive from
chemical tools that in some cases are outdated. For exam-
ple, injections of [14C]dimethyl-oxazolidinedione (DMO),
a compound that concentrates in areas of high pH, showed

higher extracellular pH ~8.0–8.5 in the more matured ar-
eas of mouse enamel than in less mineralized areas where
pH ~7.3–7.4 (352). This difference was associated with
increased calcification as Ca2� binding to protein matrix
generates high local pH, which in turn allows for the accu-
mulation of PO4

3� and OH� ions enabling the initiation of
crystal nucleation (352).

Using GBHA, Takano et al. (581) showed a pattern of red
bands on the surface of matured enamel marking alkaline
conditions. GBHA positively stained around bands of SA
cells (581). More recently, Sasaki et al. (497) used three
different pH indicator solutions to assess pH changes in
unerupted whole bovine incisors after the removal of the
enamel organ and showed alternating bands of acidic to
neutral extracellular pH along the crown. These acidic and
neutral zones were examined by suspension in distilled de-
ionized water to measure pH using a glass-electrode pH
meter. A number of halved incisors were stained with
GBHA. Results from each technique were consistent show-
ing extracellular pH conditions ranging from acidic (pH
5.5–6.0) to neutral zones (pH ~7.2) with the acidic zone
located in the occlusal half of the crown. It was hypothe-
sized that the acidic conditions observed related directly to
the release of protons by the forming crystals (497).

Analysis of developing bovine incisors with the use of pH
indicator solutions identified four different and alternating
stages of acidic and neutral pH along the crown (577). The
purified protein content from each stage showed that neu-
tral zones of enamel were characterized by the presence of
full-molecular-weight forms of AMELX and ENAM,
whereas acidic zones showed low-molecular-weight forms
of both proteins. The composition of crystals changed be-
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FIGURE 10. Hypothetical model for the
initiation of AP-2, clathrin-mediated endocy-
tosis of the degraded enamel matrix pro-
tein (EMP) debris in maturation amelo-
blasts. It is apparent that greater endocy-
totic activity is seen in the maturation
ameloblasts, when compared with secre-
tory ameloblasts. Endocytosis is likely a fea-
ture of both the ruffle-ended (RA) and
smooth-ended (SA) ameloblasts. The figure
illustrates that the endocytotic uptake may
be initiated by direct receptor-ligand inter-
action, such as the EMP debris interacting
directly with LAMP1, LAMP2, or CD63.
Alternatively, EMP debris may bind to an-
other EMP protein, such as TF, and then
this complex may bind to the TFRC to initi-
ate the uptake of the extracellular enamel
matrix peptides. A dark gray double cap-
sule represents a tight junctional complex
at the apical region of RA, and a light gray
double capsule represents a “leaky” junc-
tional complex at the apical region of SA.
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tween the alternating acidic-neutral stages based on ratios
(Ca2� � Mg2�)/P with erupted enamel having a higher
ratio than either the acidic or neutral unerupted enamel
(577). Moreover, freeze-dried strips of rat incisor enamel
organ isolated from various stages of amelogenesis were
assessed based on a distance from the tooth apex (using a
molar reference line) and provided relatively uniform pH
during secretory stage with values clustering around ~7.23,
whereas maturation stage samples showed greater variabil-
ity in extracellular pH values ranging from near-neutral to
weakly acidic conditions (pH values 6.2–7.2) (544). Re-
cently, the immersion of rodent incisors with the enamel
organ exposed in pH indicator solutions has become com-
mon practice to determine the presence of alternating bands
of RA and SA cells. Low pH is associated with RA cells.

Taken together, these studies suggest that pH in enamel
oscillates from neutral to acidic during maturation-stage
amelogenesis, whereas in secretory stage the pH remains
near the physiological levels.

C. Regulation of Extracellular pH

Ameloblasts use a number of acid-base transport mecha-
nisms to modulate extracellular pH. These include bicar-
bonate transporters, carbonic anhydrases, and chloride
channels as well as other ion pumps and exchangers. As we
have previously discussed (316), the acidification of the ex-
tracellular microenvironment associated with the release of
H� is a complex event.

D. Proteins Involved in pH Balance in Enamel

1. Bicarbonate transporters

Two genes of the SLC4 (solute carrier 4) gene family, the
anion-exchanger (AE2) encoded by SLC4A2 and the elec-
trogenic bicarbonate cotransporter (NBCe1) encoded by
SLC4A4, are expressed in enamel cells and associated with
pH modulation (61, 258, 269, 317, 350, 429). Both are
membrane proteins that play an important role in regu-
lating intra- and extracellular pH in eukaryotic cells
(460). In addition, five members of the SLC26A gene
family (SLC26A1, SLC26A3, SLC26A4, SLC26A6, and
SLC26A7), all membrane-bound ion exchangers (or
HCO3

�/Cl� exchangers), have recently been described as
being expressed at the apical pole of maturation amelo-
blasts (60, 259, 665).

The first reports of AE2 and NBCe1 expression in enamel
cells were by Paine et al. (429) and Lyaruu et al. (350). In
the study by Paine et al. (429), NBCe1-B (the alternatively
spliced B isoform of NBCe1) expression in ameloblasts was
found primarily at the basolateral pole of maturation-stage
ameloblasts, whereas AE2 showed a more apical distribu-

tion. Other reports have confirmed the localization of these
proteins, albeit showing variation in the localization of the
different NCBe1 isoforms, with some isoforms being found
primarily in the adjacent enamel papillary layer cells (258,
269). It has also been suggested that NBCe1 expression
might be associated with the developmental stage of amelo-
blasts (258). Paine et al. (429), using the immortalized
ameloblasts-like cell line LS8, found that the mRNA expres-
sion levels of both NBCe1 and AE2 changed depending on
extracellular pH.

Paine et al. (429) observed AE2 in the apical pole of secre-
tory ameloblasts in frozen-unfixed tissues, while Lyaruu et
al. (350) and Yin et al. (665) reported a basolateral local-
ization in maturation ameloblasts, leaving open the ques-
tion of AE2 function (527). If AE2 is localized at the baso-
lateral pole rather than at the apical end of the cell, the latter
being closest to the enamel-forming zone, the HCO3

� that
has moved out of the basolateral cell membrane needs to
find its way to the enamel across tight apical cell junctions
to perform its putative pH buffering role. This path of
movement is not necessary if AE2 is localized to the apical
end (see below). However, a number of studies suggest that
NBCe1 likely plays a role in mediating basolateral HCO3

�

import with apical bicarbonate secretion mediated by AE2
or other HCO3

� export pumps/channels/exchangers, work-
ing in tandem to buffer the proton load generated by apatite
formation (258, 269, 316, 320, 429). More recently, a
number of members of the anion exchanger SLC26A gene
family (SLC26A1, 3, 4, 6 and 7; HCO3

�/Cl� exchangers)
have been localized to the apical membrane of maturation
ameloblasts (259, 665), and this large number of exchang-
ers with similar or identical molecular activities ensures
abundant opportunity for HCO3

� export to the enamel ma-
trix during enamel maturation.

Mutations to SLC4A2 and SLC4A4 result in enamel abnor-
malities in humans and/or mice (117, 172, 251). Lyaruu et
al. (350) showed that mice lacking two of the five AE2
spliced variants (AE2a/b) have abnormal enamel in incisors,
but this defect is less severe in molar teeth. There are three
variants of NBCe1 (NBCe1-A, NBCe1-B, and NBCe1-C)
with mutations occurring in all variants. The incisors of
mice lacking NBCe1 have a chalky white appearance and
fracture easily (171, 317). In patients with loss of NBCe1
function, enamel defects have been described as showing
white chalk-like spots (251). Mouse models deficient for
AE2 or NBCe1 both showed decreased mineral content in
their enamel (65, 317, 350).

The function and role of ameloblasts as HCO3
� transporting

cells, and in particular that of the Na�/HCO3
� cotrans-

porter NBCe1, have been enhanced by in vitro studies using
the ameloblast-like cell line HAT7 (52). In these studies,
HAT7 cells were manipulated to form a polarized two-
dimensional culture system from which transepithelial elec-
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trical resistance, immunocytochemistry, and microfluo-
rometry data could be collected. Polarized HAT7 cells ex-
pressed NBCe1, a number of anion exchangers already
discussed (Slc4a2/AE2, Slc26a4/pendrin and Slc26a6/Pat1),
and Cftr. Active transcellular vectorial basolateral-to-apical
HCO3

� transport was recorded, and this vectorial move-
ment of HCO3

� was dependent on Na� cotransport (52).
One of the conclusions from this study was that “a basolat-
eral HCO3

� transporter, most probably NBCe1/SLC4A4,
has an important role in HCO3

� uptake.” A similar conclu-
sion was also published almost a decade earlier by Paine et
al. (429) who, based on immunolocalization data, stated
that “NBCe1 is expressed on the basolateral membrane of
secretory ameloblasts” and that “AE2 and NBCe1 are ex-
pressed in ameloblasts in vivo in a polarized fashion,
thereby providing a mechanism for ameloblast transcellular
bicarbonate secretion in the process of enamel formation
and maturation.” Both studies by Bori et al. (52) and Paine
et al. (429) strongly indicate that the basolaterally ex-
pressed Na�/HCO3

� cotransporter NBCe1 is either fully or
partially responsible for the import of HCO3

� into polarized
ameloblasts, and is most active during maturation-stage
amelogenesis (317, 318).

2. Chloride transport

Chloride transport in epithelial cells is an important regu-
lator of salt and water (513). Chloride channels in the apical
surface of the cells’ plasma membrane allow the flow of Cl�

across the cell membrane via an electrochemical gradient. In
cystic fibrosis (CF), an autosomal recessive disease affecting
1 in ~3,000 births, the cystic fibrosis conductance trans-
membrane regulator protein (CFTR), which regulates wa-
ter and chloride transport, is disrupted (122, 558, 564,
565). Chloride (Cl�) therefore accumulates inside the cells,
leading to abnormal and thick mucus secretion in the air-
ways. Mutations to the CF gene also affect the dentition
(21, 23, 63, 76, 96, 143, 445, 646, 650).

Mineralized enamel contains ~0.0065 mol/g of Cl�, total-
ing 0.23% of enamel by dry weight (128). The role of Cl� in
forming enamel crystals is poorly understood, but it has
been suggested that it may act as a transmitter of charge
(412) and as a regulator of pH (59). The first reports on
abnormal enamel in CF patients were inconclusive of cause
and effect as CF patients typically received heavy doses of
antibiotics (such as tetracycline, which can disrupt amelo-
genesis), masking the etiology of these enamel defects (646,
650). Wright and co-workers reported a series of studies of
enamel deficiencies in Cftr-deficient mice (21, 572, 646,
650), noting that during late secretion/early maturation,
their ameloblasts become cuboidal cells and prematurely
transition to a squamous epithelial stage (294). In Cftr-
deficient mice, the microstructure and thickness of crystal-
lites appeared normal but showed a more porous appear-
ance in TEM, and overall, the enamel was softer and less
mineralized with reduced Cl� levels compared with con-

trols (21, 646, 650). The enamel defects of Cftr-deficient
mice could result from a loss of the ameloblasts’ capacity to
process extracellular matrix proteins during the maturation
stage. Incisors of Cftr-deficient mice showed yellow surface
stainings when immersed in pH indicator solution, pointing
to acidic pH in the transition and maturation zones of
enamel (572). The enamel of the incisor teeth of Cftr-defi-
cient mice wears rapidly (59). It should be noted that these
data on enamel deficiencies of Cftr-null mice are derived
from the analysis of incisors, whereas molar teeth from the
same mice did not show alteration in enamel, a fact that
remains unexplained (59, 572). A porcine model for CF was
also studied by our group, reporting that molars of CFTR-
null and CFTR-delta F508 mutant pigs showed hypomin-
eralized enamel, with the most severe pathology in the
CFTR-null pigs (76). The CFTR delta-F508 mutation is the
most common one found in human CF patients.

Bronckers et al. (59) have shown that Cftr is localized to the
apical end of maturation-stage ameloblasts. This localiza-
tion pattern places Cftr in close proximity to the enamel
zone and is thus consistent with a putative role as a modu-
lator of enamel matrix pH, as noted above, buffering the
protons released during crystal formation (63). Bronckers’
group (63) and others (320) proposed that Cftr might be
associated with releasing Cl� into the enamel zone as part
of an electrogenic exchange for HCO3

�. A number of ex-
changers could be involved in this process including anion
exchanger 2 (AE2) and members of the SLC26A gene fam-
ily, all of which can transport HCO3

� in exchange for Cl�

(259, 665). It has been proposed that K� and Na� accumu-
late in enamel when Cl� is low, which suggests the possi-
bility that Na�-K�- Cl� cotransporters (NKCCs) are also
important during amelogenesis, although no direct evi-
dence of NKCC expression in ameloblasts is currently avail-
able (61). Besides the presence of CFTR and its role in
enamel formation, other Cl� channels have been identified
in ameloblasts, including the Ca2�-dependent Cl� channels
(197, 313, 320, 631). In ameloblasts a number of Cl� chan-
nels are expressed, and in addition to Cl� export, likely play
a role in endocytosis (313). For example, Clcn7/ClC7 is
expressed on the lysosomal membrane in ameloblasts
(313).

3. Carbonic anhydrases

Carbonic anhydrases (CAs) are enzymes that catalyze the
reversible hydration of carbon dioxide to bicarbonate
(Equation 4)

CO2 � H2O↔
CA

HCO3
� � H� (4)

CAs also participate in pH homeostasis, CO2 and HCO3
�

transport, and bone resorption (539, 573). Many of the
abundant CA isozymes are expressed in enamel cells but
differ in cellular distribution (e.g., Refs. 315, 463). CA2 is
the most widely expressed isozyme localized to the cyto-
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plasm of many cells (316). Ameloblasts express CA2, as
reported in a number of studies (118, 269, 298, 463). The
earliest of these reports was made in cell homogenates from
adult rat incisors (298), later confirmed by histochemical
analysis of unerupted hamster molars which found CA2
signals in more mature ameloblasts (118). A similar expres-
sion pattern was later reported in rat incisors by Reibring et
al. (463). RA cells were more strongly stained for CA2 than
SA cells (269). The similar expression of H�-ATPase
prompted interpretations that RA cells pump H� ions into
the enamel, acidifying the microenvironment in a similar
fashion to that described in osteoclasts (269), but this re-
mains untested.

Carbonic anhydrase CA6 appears to be the only CA
isozyme that is secreted from cells (433, 441, 539). Com-
plementary DNA (cDNA) library screens of rat incisor
enamel-forming cells first identified a fragment that
matched CA6, further characterized by RT-PCR and
Northern blot analysis (549). We have since confirmed the
high expression of CA6 in enamel cells (321), and a recent
study found high expression of CA6 in maturation-stage
ameloblasts (463). Smith et al. (549) have proposed that the
function of CA6 in maturation might be associated with
local buffering, supplying bicarbonate ions or recycling ex-
cess levels of carbonic acid.

In a survey of mRNA expression of all CA isozymes in
mouse enamel cells, Lacruz et al. (315) identified that in
addition to CA2 and CA6, other isozymes, notably Car11-
15, were also expressed. More recently, Reibring et al. (463)
investigated the localization of these isozymes and reported
the expression of CA4, CA9, and the related isozyme
CARP11 in the distal-ruffled border of RA cells, and a wide-
spread localization in SA cells CA13 appears to be associ-
ated with the lysosomal pathway, as evidenced by similar
punctate distribution of this protein with the lysosomal
marker LAMP1 in ameloblasts. It should be pointed out,
however, that presently human mutations or animal models
deficient for CAs showing enamel defects are poorly de-
scribed.

E. Modeling pH Regulation in Enamel

It is widely recognized that during the formation of enamel
Hap crystals, protons (H�) are released in the microenvi-
ronment (523, 541); the export of protons at the apical ends
of ameloblasts by the action of the V-type ATPase proton
pump may contribute to this (269, 342, 495). Accumula-
tion of H� may negatively impact the formation of addi-
tional crystals by lowering local pH, thus resulting in the
dissolution of crystal surface structure. It has been shown
that during the secretory stage of enamel formation, the
extracellular pH values are close to neutral and crystal
growth at this stage is limited (541, 544). This neutral pH
value during secretory stage amelogenesis has been attrib-

uted to the abundance of matrix proteins which modulate
and/or buffer against changes in pH (541). However, dur-
ing the maturation stage, pH values are acidic, associated
with increased expansion of crystals and concomitant re-
lease of H�. Thus H� must be removed from the enamel
zone to restore physiological pH conditions. It should be
highlighted that a number of proteins associated with pH
homeostasis increase in expression during the maturation
stage; these include NBCe1, AE2, CFTR, multiple SLC26A
gene family members, and many CAs (318, 664). This
marked increase in gene and protein expression of certain
ion exchangers, pumps, and enzymes has been linked to an
increase in their activities to counteract the rise in H� ob-
served during maturation stage amelogenesis.

A generalized model for pH maintenance in maturation
stage must thus take into account the removal of H�. Bicar-
bonate can perform this function by absorbing these H�. In
this model HCO3

� can be incorporated into the ameloblasts,
via NBCe1 located at the basolateral membrane, and is
released apically via exchange of Cl� facilitated by CFTR,
AE2, and SLC26A family members. HCO3

� can also be
produced via the function of CA6 in the extracellular do-
main combining CO2 and H2O. However, as previously
highlighted by Simmer and Fincham (523), carbonic anhy-
drase activity is not an effective system as this chemical
reaction, generating HCO3

� via CA enzymes, removes only
one H� locally.

The cytosolic localization of CA2 suggests that HCO3
� can

also be produced by the ameloblasts (269, 595). The re-
moval of intracellular H� might be mediated by the anti-
porter NHE1, a Na�/H� exchanger (269). NHE1 was ex-
pressed along the plasma membrane of secretory amelo-
blasts, as well as both RA and SA cells (269), likely
removing H� into intercellular spaces. As noted earlier, if
AE2 is localized along the lateral membrane, the transport
of HCO3

� into that space might then buffer the removal of
H� (61, 269). At the apical pole of RA cells, the V-type
ATPase proton pump also moves H� into the enamel space,
contributing to acidification of this region (269, 342, 495),
and a number of anion exchangers of the SLC26A gene
family (SLC26A1/SAT1, SLC26A3/DRA, SLC26A4/pen-
drin, and SLC26A6/PAT1) are also located at the apical
pole of RA cells (259, 665). The coexpression of both the
proton pump and bicarbonate channels responsible for the
extrusion of H� and HCO3

� suggests extracellular pH is
very strictly regulated during the process of enamel matu-
ration (269). It is thus apparent that in enamel maturation
ameloblasts use multiple mechanisms to lower and raise
extracellular pH as needed.

The cyclical changes from RA to SA cell morphology also
bear on the capacity to modulate pH as described above.
While a number of proteins already discussed differ in ex-
pression profiles between these two stages, the functional
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interpretation of these differences is still limited. However,
it has been suggested that this cycle allows changes in crys-
tallization conditions to occur, which would impact the
stability of crystals so that only the more stable would pass
through each cycle (269).

X. ION TRANSPORT

A. Overview

Enamel is an almost fully mineralized tissue composed of a
substituted hydroxyapatite (Hap) of primarily calcium
(Ca2�) and inorganic phosphate (Pi). Disruptions to Hap
formation can result in hypomineralized (soft) enamel,
which is more prone to acid attack and caries (135, 335,
637). Recent reports suggest that Ca2� and HCO3

�, origi-
nating from the circulation and largely diffusing across the
papillary layer, are actively transported into polarized
ameloblasts through ion exchangers and pumps located at
their basolateral membrane (320, 429). While passive para-
cellular ion movement may occur during amelogenesis
(403, 540), recent reports clearly suggest that the active
transcellular ion transport dominates the process of enamel
formation and maturation (52, 60, 269, 316, 317, 320,
321, 350). The differences between active and passive trans-
port pathways are illustrated in FIGURE 11. Intracellular
CAs are also present in ameloblasts such that HCO3

� is
generated within the cytoplasm (315, 316, 320, 595). Cal-
cium (see below for Ca2� uptake) and HCO3

� ions are then
transported across ameloblasts (409) and eventually ex-
truded through a different series of ion exchangers and
pumps located at the apical membrane to be delivered to the
enamel matrix (234, 416, 615). Mutations in many of the

ion exchangers associated with Ca2� and HCO3
� transport

result in enamel pathology (117, 125, 171, 251, 314, 317,
350). These findings suggest that the enamel organ epithe-
lium and associated Ca2� and HCO3

� transporters are crit-
ically important to enamel mineralization. While recent
studies are starting to define Ca2� and HCO3

� transcellular
transport in amelogenesis, there is scant information related
to Pi transport associated with amelogenesis. As-yet-un-
identified Pi ion channels are likely to be located on amelo-
blast plasma membranes, thus allowing for the transcellular
transport of Pi.

B. Bicarbonate

1. Overview

In 1998, Smith (541) published a review paper on enamel
maturation clearly making the case that buffering is an es-
sential part of the process, and that bicarbonate (HCO3

�)
was the main buffering system used by ameloblasts. This
was based primarily on the knowledge that cytoplasmic
carbonic anhydrase 2 (CA2) was highly expressed during
maturation, and significant expression was noted at the
apical ends of ruffle-ended ameloblasts (RA) (595). It was
felt that if large quantities of HCO3

� were produced in the
cytoplasm, then one would expect membrane-bound “car-
rier/transporter proteins” (i.e., ion transporters) to regulate
both intracellular and extracellular pH (541). During this
time Wright and co-workers were examining the enamel
pathologies seen in the CFTR mutant mice (21, 572, 646,
650) and proposed that CFTR, working in conjunction
with a chloride/bicarbonate exchanger, and both located at
the apical ends of polarized ameloblasts, were responsible

Nucleus

Papillary layer (PL)
Stratum intermedium

Enamel space (ES)

Secretory Maturation

Nucleuss
Nucleus

Basal

Apical

Nucleuss

NucleusNucleuss

FIGURE 11. Modes of ion transport from
the circulation at the basal (proximal) region
to the enamel space beyond the apical (distal)
pole of secretory and maturation amelo-
blasts. Black solid arrows indicate active
transcellular transport involving ion trans-
porters, channels, and pumps (curved ar-
rows); black broken arrow indicates a pas-
sive paracellular/intercellular movement
through “leaky” junctions (light gray double
capsule) but not through tight junctions (dark
gray double capsule); and a red arrow indi-
cates a passive transcellular pathway. Dark
gray double capsule indicates a tight junction
at the apical region of maturation
ameloblasts.
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for the export of cytoplasmically generated or cytoplasmi-
cally located HCO3

� to the enamel matrix (572). Wright et
al. (572) also suggested transcellular movements of HCO3

�

were likely if a sodium bicarbonate cotransporter was
located on the basolateral membrane of ameloblasts. In
2008, Paine et al. (429) identified the anion exchanger
AE2 (SLC4A2) located at the apical ends of polarized
ameloblasts, while the electrogenic sodium bicarbonate
cotransporter NBCe1 (SLC4A4) could be identified at the
basal pole of these same cells. More recent data however
suggest AE2 is located on the basolateral membrane of
maturation ameloblasts (269, 351, 665). The past decade
has seen significant progress in identifying the genes and
pathways involved in the buffering capabilities of amelo-
blasts and how HCO3

� enters the enamel space, summa-
rized in FIGURE 12.

2. The enamel matrix buffering system

The atomic structure of enamel crystals is a variation of a
pure calcium/phosphate-based hydroxyapatite (Hap) lat-
tice which incorporates other types of ions (i.e., carbon-

ates); thus enamel can be referred to as a nonstoichiometric
carbonated calcium Hap (188, 528, 668). Despite this clar-
ification, enamel is most frequently identified as a Hap-
based mineralized tissue, and as stated above, it has been
calculated that approximately eight H� protons are re-
leased for every unit cell of Hap crystals formed in the
extracellular environment. This generation of protons
significantly lowers the enamel matrix pH (541, 544).
These free protons may diffuse away from the matrix, but
based on recently published data this seems unlikely. It
appears that ameloblasts primarily use acid-base trans-
port systems to regulate extracellular pH, with the bicar-
bonate buffer system being the primary (or perhaps the
only) extracellular buffering mechanism that they em-
ploy (542). Neutralization of the increasingly acidic
enamel environment is achieved with the generation of
intracellular and extracellular HCO3

� through the action
of CAs (see Equation 4) (118, 315, 316, 318, 523, 541,
549, 595), and by the active transport of blood-derived
bicarbonate through specific ion channels (transcellular)
(52, 259, 320, 350, 429, 665).

Papillary layer (PL)

Enamel space (ES)

SA RA RA SA

Na+

Na+

H+

Nucleus

Basal

Apical

Nucleus

NucleusNucleus

Anions, cations
and small molecules

Anions, cations
and small molecules

2HCO3
–

Cl–
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NHE1
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Cl–
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PDS
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SUT2
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HCO3
–
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–

Cl–

H+
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ATPase
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Cl– H+

HCO3
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CA12CA2
CA3
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FIGURE 12. Generation and active transcellular movements of ameloblast-associated bicarbonate and
associated ion movements during enamel formation. Ion transporters, channels, and pumps are identified
either by their name or gene symbol. Nucleus (Nu) and lysosome (Ly) are identified. The transport pathways are
identified in a ruffle-ended ameloblast (RA). Many of these channels have also been shown in secretory
ameloblasts (not shown) and smooth-ended ameloblasts (SA) but at significantly lower levels of expression. A
dark gray double capsule represents a tight junctional complex at the apical region of RA, and a light gray
double capsule represents a “leaky” junctional complex at the apical region of SA. Black broken arrow indicates
the movements of small molecules through leaky junctional complexes.
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As described above, HCO3
� plays an important role in

enamel formation (316). A number of CAs and HCO3
�

transporters associated with enamel formation have been
described recently. The most notable are CA2, CA3 (cyto-
plasmic), CA6 (secreted/extracellular), and CA12 (mem-
brane bound) (118, 315, 316, 318, 549, 595). Membrane-
bound CA12 is a type I membrane protein with a catalyti-
cally active enzyme domain located in the extracellular
space (254, 598). Bicarbonate ion transporters identified in
maturation-stage ameloblasts include the electrogenic so-
dium bicarbonate cotransporter SLC4A4 (NBCe1) and
multiple anion exchangers; these are coded by the genes
SLC4A2 (AE2), SLC26A1 (SAT1), SLC26A3 (DRA),
SLC26A4 (pendrin), SLC26A6 (PAT1), and SLC26A7
(SUT1) (65, 258, 259, 350, 429, 665). The large number of
molecules involved with either the synthesis or transport of
HCO3

� in ameloblasts suggests that the entire process of pH
regulation during enamel maturation is under tight molec-
ular control.

3. The solute carrier (SLC) gene families

The solute carrier (SLC) gene series contains 52 families
(SLC1 to SLC52) that include 395 unique transporter genes
(214). SLC proteins transport a large number of solutes
including both charged and uncharged organic molecules,
in addition to inorganic molecules and gasses. The SLC
proteins can be further classified as belonging to one of the
following groups: facilitative transporters, secondary (cou-
pled) active transporters, primary active transporters (re-
quiring energy from ATPase hydrolysis), ion channels, and
aquaporins. Many of the solute carriers are associated with
genetic disease, and a significant number of these solute
carriers are expressed in ameloblasts.

4. The SLC genes and CFTR in enamel mineralization

All of the anion exchangers identified in the enamel organ
(i.e., SLC4A2 and SLC26A1, 3, 4, 6 and 7) are localized to
either the apical or lateral membrane of polarized matura-
tion-stage ameloblasts (259, 350, 429, 665), and this is a
similar localization profile as CFTR in the same population
of cells (59, 63, 665). Based on co-immunoprecipitation
(Co-IP) data (665), there is evidence that physical interac-
tions exist between CFTR and the SLC26A gene family
members SLC26A1, SLC26A6, and SLC26A7 in matura-
tion-stage ameloblasts (665). These functional complexes
are likely localized to the apical membrane of ameloblasts
where the expression of these genes is identified (665). The
phenomenon of several ion transporters/exchangers, cou-
pled to CFTR, with similar physiological functions and cel-
lular localizations, interacting with one another to form
united protein complexes, has been reported in multiple
areas of biomedical research. In most cases when CFTR
interacts with SLC26A family members, CFTR seems to
serve as a hub for these potential interaction complexes (46,

78, 210, 216, 221, 531, 619). One example is that
SLC26A3, SLC26A6, and SLC9A3R1 (the sodium/hydro-
gen exchanger regulatory factor or NHERF1) colocalize
with CFTR in the midpiece of mouse sperm, and the protein
complex formed by CFTR with SLC26A3, SLC26A6 and
SLC9A3R1 functions primarily to mediate transmembrane
transport of chloride, which is critical for sperm capacita-
tion (i.e., the destabilization of the mammalian sperm head
to allow for binding between the sperm head and oocyte)
(78). In cochlear outer hair cells (OHCs), the physical inter-
action between CFTR and SLC26A5, which is localized to
the lateral membrane of OHCs, has potential electrophysi-
ological significance (221). Additionally, in human bron-
chial cell lines, functional CFTR contributes to the func-
tions of SLC26A9 as an anion conductor (46). CFTR might
also interact with a broader range of pH regulators, so pH
regulation during enamel maturation might be achieved by
the coordination of functional protein complexes that are
far more sophisticated than expected. Thus the interactions
noted between CFTR and members of the SLC26A family
during amelogenesis warrant further investigation to deter-
mine their functional importance.

5. Carbonic anhydrases and bicarbonate transporter
dysfunction and enamel pathologies

A) CARBONIC ANHYDRASES. There are 15 carbonic anhydrases
isozymes/genes in the human genome (CA1-4, 5A, 5B, and
6–14) and 16 in the mouse genome (Ca1-4, 5a, 5b, and
6–15) (315, 573, 574). However, the isoforms CA8, 10,
and 11 (also Ca8, Ca10, and Ca11) do not contain one or
more of the required histidine residues of the catalytic do-
main that binds a zinc ion; thus these three isozymes are
devoid of any catalytic activity. Because of this, CA8, 10,
and 11 are sometimes classified as CA-related proteins, or
CA-RPs. Referencing the Online Mendelian Inheritance in
Man website (www.OMIM.org), disease states for humans
or rodents have been described for only CA2 (cytosolic),
CA5A (mitochondrial), CA8 (573), and CA12 (membrane
bound). To the knowledge of the authors, dental defects
have only been associated with mutations to CA2 in hu-
mans and include abnormal teeth and malocclusion (22, 55,
398, 567); however, dental anomalies in the Ca2-null mice
were not reported (57).

B) SLC4A2. The bicarbonate/chloride anion exchanger
SLC4A2/AE2 is expressed widely, being localized on the
basolateral membranes of most epithelial cells (481). The
functional role of AE2 is notable in many cell types, includ-
ing gastric parietal cells (568), choroid-plexus epithelial
cells (6), surface enterocytes in colon (5), and renal collect-
ing duct cells (7, 569). In humans, primary biliary cirrhosis
has been described for SLC4A2 mutations (3, 270, 375).
However, because of the wide distribution of expression of
AE2, it is surprising that a greater number of human pathol-
ogies have not been linked to SLC4A2; this suggests that
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many mutations that impact AE2 function may be early
embryonic lethal.

Mice null for Slc4a2 display a changed immune response
and achlorhydria (172, 491), and squamous metaplasia of
the epididymal epithelium leaves the male mutants infertile
(376). Slc4a2-null mice also have significant dental pathol-
ogy limited to the enamel organ (350). AE2 is most highly
expressed along the lateral membranes of maturation
ameloblasts (65, 269, 321, 350, 665), although our earlier
reports showed a more apical expression pattern related to
secretory ameloblasts (429). Gene expression array and
real-time PCR data from the enamel organ show that a
significant increase in Slc4a2 mRNA expression from secre-
tory ameloblasts to maturation ameloblasts (318, 321), and
it may be that this transition from secretory to maturation
stage results in a redistribution of AE2 localization (i.e.,
from the apical to lateral membranes). However, in the
maturation stage, data from Lyaruu et al. (350), Josephsen
et al. (269), and Yin et al. (665) clearly show AE2 expres-
sion along the lateral/basolateral membranes. These data
are also most consistent with the basolateral localization of
AE2 seen for most other epithelial cell types (481). The
enamel of Slc4a2-null mice had a disorganized prismatic
architecture and wore significantly more quickly than that
of normal control mice, while the dentin (dentin-producing
cells are of mesenchymal origin) was unaffected (350).

C) SLC4A4. Mutations to SLC4A4/NBCe1 can result in com-
plex disease in humans and mice including proximal renal
tubular acidosis (pRTA), growth delay, heart failure, men-
tal retardation, as well as ocular and dental enamel defects;
all these pathological states clearly impact on morbidity and
mortality (105, 117, 246, 247, 251, 292, 436, 481). Similar
disease states have been shown in the Slc4a4-null mice
(171). Slc4a4-null mice died soon after birth (mean age of
~12 days), attributed to severe metabolic acidosis with
blood HCO3

� concentrations of 4.0–7.6 mM and pH values
of 6.80–6.93 (171).

NBCe1 is expressed at the basal pole of polarized amelo-
blast cells (317, 429), and it is upregulated by three- to
fourfold as ameloblasts transition from secretory to matu-
ration stage (318, 321). During maturation stage, signifi-
cant NBCe1 expression is also noted in the papillary layer
cells (269). The gross appearance of the dentition of Slc4a4
null mice was of a hypomineralized enamel (i.e., chalky
white and opaque), while an electron microscopic exami-
nation showed that the enamel had a pitted surface, had lost
its prismatic structure, and was both hypoplastic and hy-
pomineralized (317). The dentin of these NBCe1 mutant
mice was normal (317). These data highlight the impor-
tance of NBCe1 activity in amelogenesis (320, 604).

D) SLC26A3. In humans, mutations to SLC26A3/DRA result
in congenital chloride diarrhea and can be associated with

hypokalemia, increased serum bicarbonate, and high aldo-
sterone (86, 217–219, 357). The Slc26a3/Dra-deficient
mouse displays a similar pathology to humans (511). In
mice, Slc26a3 is expressed at the apical pole of maturation
ameloblasts (259). To the authors’ knowledge there have
been no reports of dental pathologies related to human or
mouse SLC26A3 mutations.

E) SLC26A4. Pendred syndrome, which involves sensorineural
hearing loss and goiter, results from mutations to
SLC26A4/Pendrin/PEN (2, 85, 93, 134, 253, 300, 301,
365, 605, 606). Although a case report does identify a pa-
tient with Pendred syndrome as having dental disease (peri-
odontal attachment loss and hypercementosis) (517),
enamel defects have not been reported with Pendred syn-
drome or with any of the known SLC26A4 mutations. With
the use of a normal mouse model, it has been shown that, as
is the case with Slc26a3, Slc26a4 is expressed at the apical
pole of maturation-stage ameloblasts (60, 259). While
Slc26a4 mutant mouse models have been developed and
studied (121, 133), dental pathologies have not been re-
ported in the mice.

F) SLC26A6. Referencing the Online Mendelian Inheritance in
Man website (OMIM.org), disease states for human
SLC26A6 mutations have not been documented, although
an in silico analysis suggests that certain single nucleotide
polymorphisms (SNPs) in SLC26A6 may be a risk factor for
kidney stones (347). Slc26a6/Pat1 mutant mice form cal-
cium oxalate urolithiasis, with this being the only notice-
able pathology (265); however, in a second Slc26a6 mouse
mutant model, changes in the physiology of Cl�/base ex-
change in the kidney proximal tubules and oxalate stimu-
lated NaCl absorption of the duodenum were noted (620).

C. Calcium

1. Overview

In mineralized enamel, Ca2� is the most abundant ion and
can be incorporated rapidly into the enamel zone from
blood (541). Ca2� represents ~36% of enamel by weight,
about twice as much as the next ion represented (392). Ca2�

is largely incorporated during the maturation stage, with
~86% of the Ca2� found in enamel entering the tissue dur-
ing this stage (541). During the secretory stage, the concen-
tration of calcium measured in pig enamel fluid was ~5 �
10�4 M, lower than in the serum (~3 x 10�3 M), suggesting
that the enamel zone represents a specialized micro-com-
partment (17) and also pointing to the presence of an active
transport system. However, the cyclical nature of morpho-
logical changes from RA to SA in maturation may indicate
that both passive and active transport systems are available
to these cells (see below) (541).

Ca2� is also important to ameloblasts during the secretory
stage. The bulk of Ca2� in the enamel fluid in the secretory
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stage is bound, likely to 11- to 13-kDa amelogenin-derived
fragments (392, 475). Amelogenin-Ca2� binding can po-
tentially be a Ca2� reservoir, acting as a regulator of min-
eralization in particular at the secretory stage as there are
limited adsorption sites for Ca2� giving a smaller crystal
size (17). It is estimated that one molecule of amelogenin
can bind ~6.4 Ca2� (328). Reith and Boyde (469) suggested
that the binding of Ca2� to amelogenins provides a route
for the diffusion of Ca2� into the deeper layers of enamel;
however, this might seem paradoxical because of the in-
creased bulk of an amelogenin-Ca2� complex compared
with Ca2� alone. Saturation of the enamel fluid and precip-
itation of the mineral phase appears to be largely deter-
mined by the concentration of Ca2� (392, 523).

The mechanisms associated with the transport of Ca2� by
the enamel organ have been the subject of a number of
important reviews; however, much of our previous under-
standing of Ca2� transport is currently being challenged
and redefined (32, 240, 541, 579).

2. Classic hypotheses for Ca2� transport

Ca2� travels across the barrier formed by ameloblasts in the
basolateral to apical direction into the enamel, rather than
from the underlying dentin (469). Transport of Ca2� is
considered to proceed largely via a transcellular route
rather than a paracellular or passive route as secretory and
maturation stage ameloblasts form tight cell cohorts bound
by junctional complexes (502). Perfusion studies using lan-
thanum observed that this tracer leaked across the proximal
but not the distal intercellular junctions of secretory amelo-
blasts (580). In RA, tight junctions are only found near the
basolateral pole, but in SA, these junctions can be found at
the apical pole (268). It was found that lanthanum and
horseradish peroxidase (HRP) did not leak across the distal
junctions of RA or the proximal junctions of SA (579, 580,
583). The cyclic nature of RA and SA indicates that during
the smooth phase, intercellular spaces are opened to the
enamel area, allowing fluids to move passively in a proximal
direction, but remaining in that intercellular space until the
RA stage, when fluids can move towards the papillary layer
area and be cleared via the vascular system. About 70% of
all maturation-stage ameloblasts are ruffle-ended, limiting
the passive movement of Ca2� (268, 541). Studies using
radiolabelled Ca2� (45Ca) suggest that Ca2� is incorporated
through the RA (467, 582).

Considering the transcellular transport of Ca2�, most prior
studies have suggested that Ca2� entry into ameloblasts is
passive (32, 579). Influx occurred at the basolateral pole via
concentration gradient differences between the lower intra-
cellular [Ca2�] and higher [Ca2�] in the extracellular com-
partment (32). Leaked Ca2� into the basal pole increased
intracellular [Ca2�], exposing cells to potentially toxic
Ca2� levels. To prevent this while enabling transfer across
the cytosolic compartment towards the apical pole, it was

proposed that ameloblasts use a number of common cyto-
solic Ca2� buffers (32, 541, 579) including parvalbumin
and calretinin, as well as others with lower binding capacity
acting also as Ca2� sensors, including calmodulin and cal-
cineurin (98, 239, 241). The most abundant buffers are the
Ca2�-binding proteins known as calbindins (members of
the S100 gene family). Calbindin 9kD/S100, calbindin
28kD/CALB1, and calbindin 30/CALB2 have been the sub-
ject of a number of studies (41, 42, 238, 239, 241, 243, 312,
330, 599). Binding of Ca2� to buffers occurs on the sub-
second scale and thus is a key process to maintaining intra-
cellular Ca2� homeostasis. The role of mobile buffers was
considered to be of importance as it was postulated that
cytosolic [Ca2�] near the apical pole is lower than at the
basal pole so that calbindins can safely transfer bound Ca2�

across the cell (240). In addition to cytosolic buffers, Hub-
bard’s group also identified the expression of the sarco/
endoplasmic Ca2�-ATPase (SERCA) (161) whose main
function is to pump cytosolic Ca2� into the lumen of the
endoplasmic reticulum (ER), thus playing a role in Ca2�

homeostasis. Moreover, ER luminal buffers including cal-
reticulin/CALR, endoplasmin/HSP90B1, and ERp72/
PDIA4 were also identified in enamel cells (238, 242). The
safe transit of Ca2� also involves transport via secretory
vesicles and along the inner leaflet of the plasma membrane
through phospholipids (469).

Concerning Ca2� extrusion, the plasma membrane Ca2�-
ATPases (PMCA) were considered the main clearing
mechanism (32). Four genes code for PMCA proteins:
ATP2B1-4. PMCAs, which exchange protons for one
Ca2� in each ATP hydrolysis, were identified throughout
the membrane of secretory-stage ameloblasts. In matura-
tion stage these pumps were predominantly localized to
the ruffled border of RA cells (579), thus suitably posi-
tioned to extrude Ca2� while removing protons from the
enamel area and indirectly participating in pH regula-
tion (63).

Hubbard proposed a revised version of the Ca2� trans-
port system by the enamel epithelium largely based on his
group’s findings that the ER played a role in transiting
Ca2� across the cell (238, 240). In addition to the find-
ings of SERCA in enamel cells, Hubbard (238) also iden-
tified the expression of inositol receptors (IP3R) which
enable the release of ER Ca2� pools. These findings and
others related to protein buffers in the ER allowed Hub-
bard to put forth a model he termed the “transcytosis
hypothesis,” which gained traction in the literature as a
potential model for Ca2� transport in enamel epithelium
(238). Considering that mouse models deficient for the
two calbindins found in enamel and mentioned above
showed no abnormal enamel phenotypes (243, 599), the
ER-based transcytosis model proposed that Ca2� re-
mained buffered within the ER lumen where it was
moved across the cell to be extruded by PMCA pumps at
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the apical pole (240). This model, however, also envi-
sioned that Ca2� entry was likely a passive process (e.g.,
Refs. 32, 579). This is a key point revised in recent pub-
lications showing that this passive influx of Ca2� is not a
likely scenario (318, 409, 411).

3. Current ideas on calcium influx during
amelogenesis

A) CALCIUM INFLUX. A genome-wide study which compared rat
enamel organ cells from maturation and secretory stages
identified Stim1 and Stim2 transcripts as being upregulated
in maturation, which was also supported by Western blot
analysis (318). STIM1 and its homolog STIM2 are single-
pass proteins with an ER lumen amino terminus and a cy-
tosolic carboxy terminus. They are key components of a
mechanism involved in Ca2�influx in many cell types
known as store-operated Ca2� entry (SOCE), of which the
Ca2� release-activated Ca2� (CRAC) channels is the best
characterized. STIM proteins are largely localized to the ER
membrane, acting as sensors of changes in luminal ER
[Ca2�]. When the [Ca2�] in the ER lumen decreases, Ca2�

dissociates from the EF-hand motif in the amino terminus,
promoting the oligomerization of STIM (146). STIM1 oli-
gomers directly interact with the plasma membrane pore
subunit of the channel known as ORAI1, resulting in sus-
tained Ca2� entry (146). ORAI is a plasma membrane-
bound protein with three homologs in mammals (ORAI1-
3), but human mutations impacting on SOCE are only
known for ORAI1 (314). Patients with mutations in the
STIM1 and ORAI genes present with amelogenesis imper-
fecta (AI) (163, 314, 370, 615), linking CRAC channel
function with enamel formation.

Nurbaeva et al. (411) recently demonstrated that CRAC
channels are functional in enamel cells. Using the amelo-
blast-like LS8 cells (494), a murine enamel organ-derived
immortalized cell line, we adapted protocols used in many
other cell types to modulate CRAC channel function using
thapsigargin to inhibit SERCA pumps, thus passively de-
pleting the [Ca2�] in the ER to activate SOCE (411). Read-
dition of extracellular Ca2� showed a marked rise in cyto-
solic [Ca2�] demonstrating that SOCE is expressed in LS8
cells (411). Some cells were exposed to inhibitors that have
been previously used to block CRAC channels (i.e., Synta-
66, BTP2, 2-APB), all of which hampered Ca2� entry, thus
demonstrating that Ca2� uptake in LS8 cells is via CRAC
channels (411).

This research was extended to primary enamel cells, taking
advantage of the fact that enamel organs can be isolated
from the secretory and maturation stages using commonly
accepted protocols (547). STIM1 and STIM2 and all three
ORAI homologs were detected in ameloblasts with high
expression (409). STIM1 and ORAI1 showed cytosolic and
plasma membrane localization, respectively (409). Stimula-
tion of isolated enamel organ cells from secretory and mat-

uration stage with thapsigargin showed that both cell types
are equipped with SOCE. In primary cells pretreated with
the CRAC channel inhibitor Synta-66, Ca2� entry was sig-
nificantly impaired, demonstrating that CRAC channels are
functional in primary enamel cells (409). These measure-
ments were carried out using a Flexstation-3 which records
the average fluorescence of a pool of cells. A schematic
model for the entry (and exit) of Ca2� in enamel cells is
presented in FIGURE 13.

B) EVIDENCE FOR CA2� SIGNALING IN ENAMEL CELLS. It is well known
that a rise in cytosolic [Ca2�] has important signaling ef-
fects over a wide range of processes (461). It has been
shown that stimulation of the enamel cell line PABSo with
different concentrations of extracellular Ca2� resulted in an
increase in cytosolic [Ca2�] measured by fura-2 ratios
(363). The expression of the Ca2� sensing receptor (CaR/
CASR) in these cells was linked to this process (363). A later
study investigated the effects of exposing primary enamel
organ cells to external Ca2� and found that media contain-
ing concentrations of 0.1–0.3 mM Ca2� resulted in mRNA
increase of AMELX and AMTN, suggesting that Ca2�

played a role in modulating their expression (83). More
recently, the effects of Ca2� were investigated more directly
by stimulating the murine cell line LS8 with thapsigargin to
induce SOCE (411). Stimulation of LS8 cells for 0.5 h re-
sulted in a marked increase of Amelx, Ambn, and Enam
mRNA levels but not when cells were pretreated with the
CRAC channel inhibitor Synta-66 (411). These data indi-
cate that SOCE-mediated Ca2� entry is important in regu-
lating enamel gene expression in LS8 cells. A similar result
was found in primary enamel cells dissected from mouse
enamel organs after stimulation with thapsigargin (411). As
this effect was in response to a decrease in ER Ca2� stores,
it suggests that SOCE mediates the expression of enamel
genes. Protein changes analyzed by Western blot showed
that Ambn expression increased in primary cells after only 1
h following stimulation with thapsigargin, supporting the
relatively fast action of SOCE and enamel protein
expression.

C) CALCIUM EXTRUSION: ROLES OF NCX1, NCX3, AND NCKX4. Two fam-
ilies of exchangers expressed in enamel cells have helped
redefine Ca2� extrusion in ameloblasts. The first of these
reports focused on the bidirectional Na�/Ca2� exchanger
family NCX (416) which exchange one Ca2� for three Na�.
The second family is the Na�/K�/Ca2� (NCKX) exchanger,
bidirectionally cotransporting one K� and one Ca2� in-
wardly and four Na� outwardly. In most cells, [Na�] and
[Ca2�] are higher outside the cell while [K�] is higher
inside.

NCX1 and NCX3 are expressed in ameloblasts with an
apical or apicolateral distribution with NCX1 also showing
basal staining (416), and based on the histological analyses,
it appears both secretory and maturation ameloblasts ex-
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press NCX1 and NCX3 at similar levels (416). Electrophys-
iological analysis of whole cell recordings and pharmaco-
logical inhibitors for NCX further demonstrated NCX ac-
tivity in Ca2� transport (416). More recently, Lacruz et al.
(321) assessed by RT-PCR expression of NCX1 and NCX3
during amelogenesis and showed that neither of these genes
increased expression during the maturation stage, support-
ing the data that both genes are expressed at similar levels
during both the secretory and maturation stages of
amelogenesis.

Results from a genome-wide study comparing secretory-
and maturation-stage enamel organ cells found that
NCKX4 was upregulated in maturation (318). There are six
NCKX gene family members, NCKX1-6, coded by genes
SLC24A1-6, respectively. RT-PCR analysis identified all

members of the NCKX family in both secretory and matu-
ration stages, but NCKX4 was the most highly upregulated,
suggesting an important role for NCKX4 in enamel forma-
tion (234, 615). NCKX4 is localized to the apical end of
maturation stage ameloblasts and thus likely associated
with Ca2� extrusion (234, 320). Subsequent reports identi-
fied severe enamel defects in patients and in mouse models
with mutations to SLC24A4 (439, 615), strengthening the
link between NCKX4 and enamel formation.

D) CALCIUM EXTRUSION: PLASMA MEMBRANE CA2�-ATPASES. Borke and
co-workers (53, 54, 669) have reported the presence of
plasma membrane Ca2� pump (PMCA) proteins in the
enamel organ cells, and further investigation is warranted
based on the current interest in ion transport and amelo-
genesis. The PMCA proteins are coded by four unique
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FIGURE 13. Proposed model for Ca2� handling by ameloblasts. Secretory ameloblasts (Sec.) have either
passive and/or SOCE for Ca2� uptake. Extrusion at this stage is mediated largely by plasma membrane
Ca2�-ATPases (PMCAs) or sodium/calcium exchangers (NCXs). Ca2� uptake in maturation (Mat.) stage RA
occurs largely via SOCE. STIM1 has a wide distribution throughout the endoplasmic reticulum (ER), and ORAI1
is found in the plasma membrane of RA. Sarco/endoplasmic reticulum SERCA2 pumps sequester cytosolic
Ca2� into the ER lumen, whereas inositol 1,4,5-trisphosphate receptors (IP3R) might be the main ER Ca2�

release channels although ryanodine receptors (RyR) have also been identified. As Ca2� pools are depleted in
the ER, STIM1 clusters enable Ca2� entry via the ORAI1 channel. Extrusion in RA is mediated principally by
NCKX4, with NCX1, NCX3, and PMCA also playing a lesser role. In SA cells, STIM1 is nearly absent, and the
localization of NCKX4 changes becoming internalized which is predicted to alter Ca2� transport during SA
phase. A dark gray double capsule represents a tight junctional complex at the apical region of RA, and a light
gray double capsule represents a “leaky” junctional complex at the apical region of SA.
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genes: the ATPase plasma membrane transporting genes
1–4 (ATP2B1, ATP2B2, ATP2B3, and ATP2B4). Borke
and co-workers used antibodies that recognized the PMCA
proteins, but it is unclear if they could distinguish between
the four gene products/isoforms. The majority of the stain-
ing was located at the apical membrane of both secretory-
and maturation-stage ameloblasts, with the greatest reac-
tivity seen in early maturation (669). Expression was also
evident in the papillary layer cells (669). In situ hybridiza-
tion showed that both Atp2b1 and Atp2b4 were expressed
in ameloblasts, with the highest signal being noted during
early maturation (54). With the exception of a single paper
looking at the expression of Atp2b1 in zebrafish bone and
teeth (183), no other papers could be identified that have
extended the prior work on the role of PMCA proteins in
amelogenesis.

Taking the above studies together, a number of calcium
exchangers and pumps have been identified primarily on the
apical membrane (and occasionally the lateral membranes)
of secretory- and maturation-stage ameloblasts, with these
being NCX1, NCX3, and the PMCA proteins. Expression
of the NCKX4 is restricted to the apical membrane of mat-
uration-stage ameloblasts. A summary schematic of these
calcium extruding exchangers and pumps is shown above
(FIGURE 13).

4. A revised model for Ca2� influx/efflux in enamel
organ cells.

Current evidence suggests that Ca2� entry into enamel cells
is modulated by CRAC channel proteins STIM1 and
ORAI1 (314, 409). Stimulation of CRAC channels in most
cells is mediated by the action of an agonist binding to a cell
surface receptor, which results in intracellular produc-
tion of phospholipase C (PLC) and inositol 1,4,5-trispho-
sphate (IP3) (455). IP3 binds to its receptor in the ER
membrane, releasing Ca2� into the cytosol and activating
SOCE (158, 435). Given that IP3 receptors (IP3Rs) are
highly expressed in ameloblasts (409) and that IP3R ex-
pression predominates in nonexcitable cells (559), it is
likely that this receptor family is associated with SOCE in
enamel cells (409). The increase in cytosolic [Ca2�] re-
sulting from SOCE activation is buffered via a number of
cytosolic proteins, although it is as yet unclear whether
these buffers, in particular the calbindins, can move Ca2�

safely across ameloblasts or whether the extensive tubu-
lar network of the ER mediates this process (240). Ca2�

homeostasis can also be monitored by Ca2�-ATPases,
SERCA2, and exchangers extruding Ca2� including
NCX1, NCX3, NCKX4, and PMCAs (32, 234, 416) (see
FIGURE 13).

Overall differences between secretory- and maturation-
stage ameloblasts in the expression of these proteins tend to
suggest that all of them are expressed in both stages, but
during maturation many of them show increased expres-

sion. These data are in keeping with the increased transport
of Ca2� during maturation reported by others (240, 541),
so the expectation would be that as Ca2� mineral uptake
increases in maturation, the Ca2� handling machinery is
also upregulated (318).

The contribution of SA cells to Ca2� transport in enamel
cells during the maturation stage remains unclear. While
tracer analyses (45Ca) indicate rapid movement of Ca2�

from blood to the enamel area in ways that would seem
more appropriate to a passive (intercellular) movement of
Ca2� (541), it can also be speculated that injection of 45Ca
might overload the active system associated with RA cells,
facilitating rapid and perhaps artificial passive diffusion
across the leaky SA cells. Until the functional differences
between these two cells types are more clearly explored, this
will remain unresolved. However, as pointed out by Smith
(541), it is also a strong possibility that ameloblasts use the
RA-to-SA modulation to enhance Ca2� transport so that a
constant supply is maintained regardless of the cell type
involved.

D. Phosphate

1. Overview

At least two studies have used a 32Pi-labeled pulse (follow-
ing intraperitoneal injection) to investigate Pi incorporation
into enamel (279, 477). Labeled 32Pi in the enamel matrix
was observed within 10 min, with a greater incorporation
found in the secretory-stage enamel matrix when compared
with maturation stage. While the data presented by Robin-
son et al. (477) show a very complex pattern of Pi move-
ments into the enamel matrix, when viewed over 24 h there
seems to be a peak of 32Pi inclusion at ~4 h (times examined
from the initial injection were 10 min and 2, 4, 8, and 24 h),
again with the majority of Pi moving into the secretory-
stage matrix. Similarly rapid (minutes) radiolabeled Ca2�

uptake into the enamel space has also been shown (202,
396, 602). The incorporation of Pi from the circulation to
the enamel matrix in as little as 10 min suggests the possi-
bility of a paracellular/intercellular route, but as discussed
in a prior review paper (541), while Pi (and Ca2�) move-
ment from the circulation to the enamel space occurs
quickly, likely via intercellular spaces, there does appear to
be a level of cellular control and facilitated movement of-
fered by ameloblasts (541).

Lacruz et al. (318) and Yin et al. (664) have recently per-
formed a whole-genome array analysis for rat incisor secre-
tory-stage and maturation-stage enamel organ cells and
identified that sodium-dependent Pi transporters (cellular
transporters for the coupled import of Na� and HPO4

2� or
H2PO4

�) feature prominently in amelogenesis. Our array
data indicate that Slc20a1 and Slc20a2 are expressed at
high levels throughout amelogenesis, while Slc34a2 in-
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creases ~30- to 60-fold as enamel organ cells transition
from secretory stage to maturation stage (318, 664). This is
of particular interest because the expression of Slc34a2 is
pH sensitive (156, 382, 610), being upregulated at lower
pH, which is known to characterize the enamel environ-
ment during maturation (316, 318, 544, 664). The SLC20
gene family comprises SLC20A1 and SLC20A2, which
code for the proteins referred to as PiT-1 and PiT-2, respec-
tively (157). PiT-1 and PiT-2 are ubiquitously expressed in
all tissues and are thought of as “housekeeping” transport
proteins, although differences in function in various tissues
are noted (157).

2. Sodium-dependent phosphate (Pi) transporters of
the solute carrier (SLC) class of genes

The sodium-dependent (or sodium-coupled) phosphate (Pi)
transporters are members of the SLC17A (SLC17A1-4),
SLC20A (SLC20A1-2), and SLC34A (SLC34A1-3) gene
families. In an initial genome-wide array analysis of the
enamel organ cells (318), the expression levels of all of the
SLC17 gene family members were negligible while members
of both the SLC20 and SLC34 families were expressed at
high levels, as was the alkaline phosphatase (Alpl) gene
(318). SLC20A and SLC34A are known classically as elec-
trogenic transmembrane proteins that cotransport Pi and
Na� from the extracellular space/fluid into the cell (157,
174). SLC20A moves two Na� and one H2PO4

� across the
cell membrane, while SLC34A moves three Na� and one
HPO4

2� (157, 174, 508).

3. Phosphate export in amelogenesis

There are no published data that add to our understand-
ing of Pi export to the enamel matrix once it is internal-
ized in the enamel-forming cells. Once Pi is internalized in
ameloblasts it then may be transported by an as-yet-
unknown mechanism to the mitochondria and stored as
polyphosphates, as has been proposed for bone cells
(418, 419). From the mitochondria, the polyphosphates
would then need to be transported in specialized secre-
tory vesicles to the plasma membrane to be released to
the extracellular matrix as needed (418, 419). Polyphos-
phates would then be enzymatically cleaved into or-
thophosphates allowing for Hap formation. For such an
activity to occur, the expression of alkaline phosphatase
(ALPL) would be required, and it has been shown previ-
ously that ALPL activity is expressed at the apical pole of
polarized ameloblasts, both during secretion and matu-
ration (311).

4. SLC20 and SLC34 gene families and their roles in
health and disease

The SLC20 gene family comprises SLC20A1 and
SLC20A2, which code for the proteins referred to as PiT-1

and PiT-2, respectively (157). PiT-1 and PiT-2 are ubiqui-
tously expressed in all tissues and are thought of as “house-
keeping” transport proteins, although differences in func-
tion in the various tissues are noted (157). For example,
PiT-1 is involved with bone Pi homeostasis and is under the
regulation of bone-specific signaling factors such as IGF-1
and BMP2 (155, 381). Pit-1 is essential for liver develop-
ment (35), and in cell culture Pit-1 has been shown to play
a role in cell proliferation, cell cycle regulation, mitosis, and
cytokinesis (36). Slc20a1 knockout mice are embryonic le-
thal (35), and to date, no mutations in SLC20A1 have been
linked to human disease. Humans with mutations to
SLC20A2 (613) and mice null for Slc20a2 are viable and in
both species show a similar neurological pathology limited
to basal ganglia calcifications (261). The function of the
SLC20 gene family members has not been investigated in
dental tissues.

The SLC34 gene family is composed of three members,
SLC34A1-3, which code for proteins NaPi-IIa, NaPi-IIb,
and NaPi-IIc, respectively. Expression of NaPi-IIa and
NaPi-IIc is somewhat limited to the kidney proximal tu-
bules (155, 405). NaPi-IIb is not expressed in the kidney
and mediates Pi absorption in the gut (155, 405). SLC34A2
is also expressed in lungs, testes, salivary glands, thyroid,
liver, and mammary glands (405). In humans, mutations in
SLC34A1 are linked to nephrolithiasis and osteoporosis
(457), autosomal recessive Fanconi syndrome, hy-
pophosphatemic rickets (356), nephrocalcinosis, and hy-
percalcemia (290). SLC34A2 mutations are linked to al-
veolar and testicular microlithiasis (381), and SLC34A3
mutations are linked to hypophosphatemic rickets and
hypercalciuria (44).

Several mutant mouse models have been studied for
Slc34a1 (593), Slc34a2 (413), and Slc34a3 (593) and
generally bear nonlethal phenotypes similar to those
noted in humans. In enamel organ tissues, levels of
Slc34a1 and Slc34a3 mRNA are negligible (318). The
levels of Slc34a2/NaPi-IIb mRNA are negligible in the
secretory-stage enamel organ cells, and significantly up-
regulated during maturation-stage amelogenesis (318,
664). A recent paper in the dental literature shows, using
immunolocalization with two distinct antibodies against
mouse Slc34a2/NaPi-IIb, expression is limited to the api-
cal pole of maturation ameloblasts (61). The authors
suggest that NaPi-IIb may secrete/export Pi and Na� into
the enamel space (61). This would require that NaPi-IIb
flip such that the amino terminus and carboxy terminus,
normally located in the cystoplasm, relocate to the
enamel space. This would be a novel functional role for
NaPi-IIb in cells; however, based on the localization data
presented by Bronckers et al. (61), this positioning of
NaPi-IIb at the apical membrane of maturation amelo-
blasts is worth investigating further.
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E. Fluoride

Fluoride is incorporated into the developing enamel crystal-
lites during enamel formation, and also after the enamel is
completely formed. During amelogenesis, fluoride ions (F�)
can substitute randomly for hydroxide ions (OH�) or car-
bonate ions (CO3

2�), usually at very low levels, in the hy-
droxyapatite (Hap) crystallite structure (15, 16, 45, 62,
107, 131, 476, 523). Some dental researchers thus refer to
dental enamel as a fluorohydroxyapatite-based structure
(99, 329, 523). The inclusion of low levels of F� enhances
crystal growth rates and makes the resulting enamel more
stable than pure Hap (523), thus improving its resistance to
dental caries by decreasing its acid solubility (141, 487,
597). This property has made fluoride a staple of modern
dental health care. Nevertheless, if fluoride were absent dur-
ing amelogenesis, teeth would form without any significant
deficiencies, pathologies, or changes in morphology and
function.

Once a tooth erupts, F� can still be incorporated into the
enamel crystallites, but F� must diffuse into the enamel
from the enamel surface to substitute or replace OH� that
may be lost, for example, as a consequence of demineral-
ization during the process of dental caries. In an incipient
carious lesion, demineralization is initially seen just below
the enamel surface (20, 89, 252), and the chemical events
that contribute to the demineralization/remineralization
process result from the effusion and infusion of ions to
restore the damaged Hap-based enamel. Topical fluorides
are an effective approach to prevent early carious lesions
from progressing and hasten the remineralization process
(1, 14, 224).

Excessive exposure to F� during enamel formation can re-
sult in dental fluorosis or mottled enamel (11, 13, 62),
which is hypomineralized. Fluorosed enamel has a greater
amount of retained matrix proteins (62, 108, 110, 476,
643); thus some researchers have speculated that F�, above
a certain concentration, may have a negative impact on the
function and activity of the secreted enamel proteinases
such as MMP20 and KLK4 (15, 62, 107). However, recent
studies suggest this may not be the case, given that a high
concentration of fluoride ions does not impact the enzy-
matic activities of either MMP20 or KLK4 in vitro (173,
600). In vitro, excess levels of F� have been shown to de-
crease MMP20 expression, but not the expression of
AMELX (673). There is, however, an in vivo-based (rodent)
study showing that increases in ingested F�, to levels that
cause dental fluorosis, result in a decrease in TGF-�1/Tgfb1
expression in enamel cells and this in turn inhibits Klk4
expression (575). These data may suggest that decreased
Klk4 activity results in retained protein matrix in surface
enamel that is visualized as dental fluorosis (or white spot
lesions) (575). Some of the most current research on dental
fluorosis and amelogenesis suggest that there is a connec-
tion between high levels of F� and the initiation of both

oxidative and ER stress pathways (306, 518, 522, 576). It
has been shown in ameloblasts and other cell lineages that
both oxidative and ER stress result in a decrease in overall
protein synthesis and secretion (215, 306, 309, 310, 346,
628), including the enamel proteinases (522). However, se-
cretion of the major enamel structural proteins (i.e.,
AMELX) during secretory-stage amelogenesis appears rel-
atively unaffected to exposure of high levels of F� (62).
Thus one likely cause of hypomineralization as it relates to
fluorosis appears to result from lesser quantities of secreted
enamel proteinases acting on a “normal” quantity of
enamel protein substrates, rather than decreased kinetic ac-
tivity in the presence of a normal quantity of proteinases
(106, 110, 522).

While there has been extensive research directed at discov-
ering the pathogenic mechanism behind dental fluorosis,
and much of this work has been done either using cultured
human enamel cells, or using mice or rats exposed to vari-
ous levels of F�, there needs to be caution translating these
findings to humans. In rats and mice, long-term exposure to
F� at 25–30 ppm in the drinking water would be required to
produce visible sign of enamel fluorosis (12, 109), while F�

at 100 ppm is a typically used dose to induce dental fluoro-
sis in both rats and mice (62, 576, 607, 608). This dose is
high when compared with the dose of ~6 ppm that would
result in enamel fluorosis (with most individuals being se-
verely affected) in close to 100% of the human population
(see below).

While work continues on the biological, physical, and
chemical properties of F� inclusion in dental enamel, the
pathways that import and export F� in ameloblasts remain
unknown. Some researchers believe F� itself is unable to
diffuse across the plasma cell membrane, but can readily
pass through the membrane in the form of hydrofluoric acid
(HF) (522). To the authors’ knowledge, ion channels that
selectively transport F� in mammalian cells have not been
described; however, in bacteria, yeast, and some plant cells,
a number of ion channels have been described that effec-
tively transport F� (264, 323, 551, 563). For example, in
bacteria, members of the voltage-sensitive chloride channel
(ClC) superfamily have been shown to transport F� (323,
339, 562). It should be noted that mammalian cells express
nine members of this ClC family (Clcn1-7, plus Clcnka and
Clcnkb) (37, 313); thus future studies may make a connec-
tion between the role of certain chloride channels and/or
pumps, or even channels specific to fluoride, and the trans-
membrane movements of F� in mammalian cells, including
ameloblasts.

F. Iron

Iron is seen at its highest concentrations at the labial surface
or rodent incisors and gives the surface of these teeth a
yellowish appearance (374, 632). Over a century ago, it was
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noted that hypoparathyroidism resulted in loss of pigment
in rat incisors (130). Early studies have led to differing
conclusions regarding the role of iron in surface enamel.
Stein and Boyle (560) suggested that iron pigmentation does
not impact enamel structural properties based on the obser-
vation that, after surgically destroying the pigment-contain-
ing part of the enamel organ, the integrity of the underlying
enamel is not affected. In contrast, Prime et al. (458)
showed that an extended deficiency in dietary iron caused
loss of pigmentation, resulting in enamel hypoplasia and
aplasia, suggesting that an iron deficiency was associated
with severe enamel structural defects.

Iron is essential to all living organisms. The most abundant
iron-containing proteins are hemoproteins that are in-
volved in oxygen transport and delivery. The ability of iron
to shuttle between ferric iron (Fe3�) and ferrous iron (Fe2�)
makes it especially useful in electron transport and enzyme
catalysis. However, unregulated fluctuations in iron con-
centration can cause cellular damage by catalyzing reac-
tions leading to the production of toxic oxygen radicals (10,
181). Excess iron that is not for immediate use is stored in
ferritin, a shell-like protein structure with a central cavity
containing Fe3�. Mammalian ferritins are 24-subunit het-
eropolymers made of two different subunit types, a heavy
and light chain, coded by the FTH and FTL genes, respec-
tively. The early embryonic lethality in Fth knockout mice
suggests a critical role for ferritin during development
(144). The expression of FTH and FTL is influenced by iron
concentrations in the immediate environment (206).

Iron is actively involved in numerous biological functions
by serving as a cofactor for many proteins, including cata-
lases and peroxidases in oxygen metabolism, hemoglobins
in oxygen binding and transport, cytochromes in oxidative
phosphorylation and in electron transport (434). Energy-
requiring events, such as active ion transport, and water and
matrix protein removal from the maturing enamel, demand
a high level of ATP production through mitochondrial ox-
idative phosphorylation (414). It is therefore conceivable
that iron is required by maturation-stage ameloblasts to
assist in cellular energy production.

Rodent incisors are characterized by yellowish pigmenta-
tion on the labial side due to an iron content of ~0.030% in
the whole upper incisor and 0.027% in the whole lower
incisor (449). Electron microscopy has shown that iron is
found primarily in the region of the enamel organ associ-
ated with maturation (465). The functional significance of
iron in rodent incisor enamel is not understood, but it has
been proposed that iron can decrease the solubility of crys-
tallized Hap because iron density positively correlates with
acid resistance of outer enamel (415). In addition, many
knockout or transgenic animals targeting the silencing or
overexpression of enamel gene products result in an enamel
with a chalky white appearance and structural defects (230,

237, 317, 525, 526, 646, 650), suggesting the incorporation
of iron into enamel is linked to the normal process of
enamel formation (424, 666). Given the high iron content in
mature enamel, not surprisingly, Fth has been identified as
one of the genes most highly upregulated in maturation
ameloblasts when compared with secretory ameloblasts
(318, 319).

To date, published reports on the presence of iron and fer-
ritin in teeth have been primarily limited to observations in
ameloblasts and in the enamel of rodent incisors (383, 465,
632); however, limited iron uptake in developing rat molars
has also been observed using autoradiographic (33) and
immunolocalization approaches (632). Data from Wen and
Paine (632) indicate that iron is present in ameloblasts of
continuously growing incisors, and also evident in amelo-
blasts of molars (albeit at significantly lower levels), and
favor the idea that iron is an integral component for enamel
formation. Iron is not released from the ameloblasts and
deposited into the enamel until the Ca2� and phosphorus
contents of the enamel have reached a maximum level
(201). In addition, there is an inverse relationship between
the iron and Ca2� content in the outer enamel layer (303).
One hypothesis proposed by Halse and Selvig (201) is that
enamel mineralization advances only to a point, leaving
room for subsequent incorporation of iron accompanied by
removal of Ca2�. Therefore, iron incorporation may repre-
sent the final refinement of surface enamel mineralization to
provide extra strength or acid resistance. This would help
explain the wear pattern of rodent incisors, where the sur-
face enamel wears less than underlying enamel, resulting in
“bladelike” occlusal surfaces that allow for gnawing of
hard foods.

G. The “Other” Ions: Magnesium, Sodium,
and Potassium

Mineralized enamel contains, in addition to the main com-
ponents Ca2�, PO4

3�, OH�, and Cl�, a small amount of
various trace elements including Mg2�, Na�, and K�.
These elements are represented in different concentrations
across the enamel layer; variation exists across species and
even across individuals. This individual variation is associ-
ated with external factors such as diet and the chemistry of
the water consumed during tooth formation. Young (668)
reported concentrations (as percentage by weight) for these
elements in mineralized enamel as follows: Mg2� (0.22%),
Na� (0.70%), and K� (0.03%), which are far lower than
the values reported for Ca2� (36.6%) or Pi (18%). The
millimolar concentrations for Mg2� and Na� measured by
Aoba and Moreno (17) in the enamel fluid just adjacent to
the apical pole of ameloblasts were lower than in serum,
whereas K� was higher, suggesting that there is a system at
the apical pole modulating the movement of these ions.
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Mg2� concentration in mineralized enamel increases from
the outer enamel towards the deeper layers near the dentin
(519). Being a divalent cation like Ca2�, it sometimes com-
petes with the latter for space in the crystal structure (19).
However, Mg2� has a smaller atomic radius than Ca2� as
well as a greater affinity for water molecules, which limit its
incorporation into the enamel crystals (523). In many cells,
cytosolic Mg2� concentration is higher than extracellular
levels. Transcellular transport of Mg2� in enamel has been
poorly understood until recently as only Ca2�-Mg2�-
ATPases had been implicated in enamel physiology (490).
More recently, it was reported that mutations in the cyclin
and cystathionine-beta-synthase (CBS) domain divalent
metal cation transport mediator 4 (CNNM4) gene associ-
ated with Jalili syndrome also showed enamel deficiencies
(438). Patients with CNNM4 mutations are characterized
by ocular deficiencies associated with retinal dystrophy and
also present hypomineralized, thin enamel. The enamel
from patients with CNNM4 mutations showed lower Ca2�

but increased Mg2� in enamel than that from healthy pa-
tients (349). In ameloblasts, CNNM4 is found at the baso-
lateral pole and has been linked to Mg2� extrusion (661).
Patients with hypomagnesemia also present with dental de-
fects (hypoplasias), adding to the relevance of Mg2� in
enamel formation (73).

Mg2�-deficient enamel phenotypes are also associated with
the ion channel for divalent metal cations, TRPM7, which
has been shown to play a critical role in enamel mineraliza-
tion (401). TRPM7 is upregulated during maturation stage
and expressed in maturation-stage ameloblasts (401, 672).
Trpm7 mutant mice show an enamel phenotype that is very
similar to the Alpl-null mice, with severe hypomineraliza-
tion, which suggested that the activity of one protein may be
influenced by the other (373, 401). Prior studies have
shown that Mg2� enhances the activity of ALPL (102, 213,
470). The hypomineralized enamel phenotype seen in the
Trpm7 mutant mice could be rescued with supplemental
dietary Mg2�, indicating that in amelogenesis, TRPM7 al-
lows for the inward passage of Mg2� in ameloblasts which
in turn enhances the activity of ALPL (401).

In 2009 Beniash et al. (39) identified that, in newly forming
enamel, the presence of amorphous calcium phosphate
(ACP) is a precursor for the formation of the Hap crystals.
Despite the fact that the presence of ACP in newly forming
enamel had been suggested many years earlier (e.g., Refs.
48, 114, 474), the data presented by Beniash et al., showing
that ACP could be detected in structures with similar shape
and dimensions as more mature Hap crystals (39), were a
paradigm shift in how dental researchers viewed initial
enamel crystallite growth. In mature enamel, Mg2�, in a
Mg-substituted ACP (Mg-ACP), can be detected at its high-
est levels at the boundaries of individual enamel crystals
(192, 193), suggesting Mg2� may play a role in ACP stabi-
lization (116), or that Mg-ACP could play a significant role

in the dynamic demineralization/remineralization proper-
ties of enamel, for example, as seen in initial carious lesions
or the incorporation of F� after the tooth has erupted (192,
193).

The amount of Na� in enamel, like that of Mg2�, increases
towards the deeper enamel layer, whereas that of K� ap-
pears to be steadily represented throughout (519). There
has been a renewed interest in Na� transport in ameloblasts
because of the recent identification of a number of exchang-
ers and contransporters that move Na� in and out of these
cells (61, 234, 317, 318, 320, 416). The critical role of these
proteins in enamel is evidenced by the severity of the abnor-
mal dental phenotypes found in patients with mutations to
some of these exchangers (NCKX4) and cotransporters
(NBCe1), as discussed in the previous sections. NCKX4
exchanges one K� and one Ca2� for four Na�. The similar
exchange of K� and Ca2� and the much higher abundance
of the latter in enamel suggests that there is likely a rapid
removal of K� soon after secretion (61). The exact roles of
Na� and K� in forming enamel crystals are poorly under-
stood.

XI. FLUORIDE AND DENTAL HEALTH

Dental caries is a disease caused by biofilm on the tooth
surface metabolizing carbohydrates and generating acids
that dissolve the tooth mineral. As noted above, incorpora-
tion of fluoride into enamel occurs during development and
enamel mineralization, and also after the dental crown is
fully formed and has erupted into the mouth due to contin-
ued environmental exposure (250, 626). Reduced enamel
solubility due to fluoride incorporation is one of the mech-
anisms whereby fluoride helps reduce the risk for develop-
ing dental caries. Fluoride ions are incorporated into the
hydroxyapatite (Hap) molecular structure through substi-
tution for hydroxide or carbonate ions creating fluoride-
enriched Hap (45). Fluoride is not uniformly distributed
throughout the dental crown and is most abundant in the
outer layers of enamel compared with the enamel closer to
the dentin (625). As the fluoride level in enamel increases
and the carbonate level decreases, the enamel becomes less
acid soluble.

Another caries prevention mechanism for fluoride occurs
through exposure of partially demineralized and damaged
enamel crystallites to F�, Ca2�, and PO4

3� (200). Fluorine is
highly reactive, allowing fluoride ions to attach to the par-
tially demineralized enamel crystallites and then react with
Ca2� and PO4

3� ions that are present in saliva or provided
via therapeutic agents designed to control dental caries.
Through this process, known as remineralization, fluoride
is able to help repair the damaged crystallites and assist in
replacing mineral content lost during acid exposure or de-
mineralization (140).
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Because of these properties, the acquisition of fluoride in the
diet of pregnant and nursing mothers, and young children
up to the time when enamel is fully formed on all permanent
teeth except the third molars (circa 8 yr of age), is widely
recommended by dentists and pediatricians. Fluoride is of-
ten present in, or added to, drinking water. Natural concen-
trations vary depending on the ground water aquifer, but
the current optimal recommended level in the United States
is 0.7 ppm or 0.7 mg/liter (8, 69, 139, 277, 426). If fluoride
is not present in the drinking water, or present at subopti-
mal levels, fluoride can be given as a dietary supplement in
the form of sodium fluoride salt, with the dosage (0.25–
1.0mg F�/day or 0.55–2.2mg NaF/day) being predicated on
factors such as risk for developing dental caries, the indi-
vidual’s age and stage of tooth development, and consider-
ation of their overall fluoride exposure (69).

The inverse relationship of fluoride exposure in drinking
water to dental caries prevalence was discovered by evalu-
ating populations exposed to naturally occurring variations
in drinking water fluoride concentrations (101). These early
epidemiological studies led to community water fluorida-
tion studies that confirmed the reduction in tooth decay
when water had 0.7–1 ppm fluoride ions compared with no
fluoride. Epidemiological studies also revealed that expo-
sure to fluoride levels in excess of 1 ppm during enamel
formation increased the risk of developing dental fluorosis
(142). The inverse relationship between dental caries and
dental fluorosis with respect to drinking water fluoride con-
tent is illustrated in FIGURE 14. As stated above, in the
United States, the Department of Health and Human Ser-
vices recommends community drinking water have an op-
timal fluoride level of 0.7 ppm. Worldwide most dentists
recommend that everyone, throughout their lifetime, con-
tinuously expose their teeth to fluoride from sources such as
fluoride-containing drinking water (at 0.7 ppm) and fluo-
ride-containing toothpastes.

Enamel fluorosis is an irreversible pathological condition
characterized by hypomineralization of the enamel due to

excessive exposure to fluoride during enamel development/
mineralization. The level of hypomineralization and clinical
appearance of the fluorotic enamel varies from mild to se-
vere (FIGURE 15) and is partially determined by the amount
of fluoride in the individual’s serum (471). Individuals have
differing risk and resistance to developing dental fluorosis
based on their genetic makeup and health. Studies indicate
there are likely multiple genes that are important in defining
variance for dental fluorosis risk (132). Fluoride has a vari-
ety of actions that contribute to the development of dental
fluorosis including direct effects on the ameloblasts, the
developing matrix, and processing of the matrix, altering
the proton release during mineralization and how these pro-
tons are handled during pH regulation (18, 24, 106, 351).
The combined effects on these processes during amelogen-
esis cause a dose-dependent response to excessive fluoride
that results in changes in the enamel crystallite morphology
and packing, presenting ultimately as decreased enamel
mineral content.

XII. DEVELOPMENTAL ANOMALIES
IMPACTING ENAMEL

Enamel development can be perturbed by many different
environmental influences and genetic alterations. Amelo-
genesis is a highly regulated process and can be negatively
influenced by pathological/medical conditions such as fe-
ver, infection, trauma, changes in oxygen saturation, anti-
biotics, and many other factors (TABLE 1) (397, 571). The
enamel phenotype resulting from different types of insults
during amelogenesis will vary depending on the type of
stress as well as duration and intensity of the influence. In
general, the resulting enamel defects can be classified as
defects in the amount of enamel (hypoplasia) or deficiencies
in the mineral content (hypomineralization). Enamel hyp-
oplasia can be generalized throughout the dentition or it
can be localized. Environmental stressors that are of short
duration (e.g., fever) often cause localized defects, whereas
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FIGURE 14. This graph shows that the
level of dental caries, as measured by De-
cayed, Missing and Filled (DMF) Teeth
(shown on left y-axis), increases as the
drinking water fluoride level decreases
from 6 ppm to 0 ppm as shown on the
x-axis. Conversely, the prevalence of dental
fluorosis increases in the population from
~0% affected individuals when there is no
fluoride in the water to ~100% of individu-
als being affected when the drinking water
fluoride concentration is 6 ppm. The sever-
ity of fluorosis increases as the drinking
water fluoride concentration increases.
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chronic stressors (e.g., elevated fluoride exposure) are more
likely to be associated with generalized defects (TABLE 1).

Enamel defects are common in the general population, with
reports suggesting that between 20 and 80% of the world’s
population have enamel defects (538, 570). The broad
range of reported enamel defect prevalence is largely due to
inclusion criteria for what constitutes an enamel defect
(e.g., actual hypoplasia or a deficiency in the amount of
enamel vs. a color change indicating hypomineralization).
Not all teeth, or even all surfaces of teeth, are affected
equally by enamel defects even though they form at the
same time. Children having more frequent and serious ill-
nesses are more likely to have enamel defects.

Not uncommonly, children (2–15%) have enamel defects of
the facial or front surface of their primary canine teeth (395,
535). It has been hypothesized that these lesions occur due
to the thin or often fenestrated bone over the developing
canine teeth during infancy that predisposes them to minor

trauma, leading to enamel defects (535). Another common
enamel defect involves any or all of the first permanent
molars (prevalence range from 5 to 25% of children) and
can vary markedly in severity of hypomineralization (168,
627). The more severely hypomineralized the molars, the
more likely it is that there will be defects of the permanent
incisor enamel as well. This condition is called molar incisor
hypomineralization (MIH); in its mildest form the enamel
shows only a minor color change and altered opacity, while
in the severe forms the enamel breaks away from the tooth
during eruption, leading to loss of the enamel and not un-
commonly the tooth (FIGURE 16). Teeth affected by MIH
are often very sensitive to thermal or chemical stimulation
as they do not have an adequately mineralized enamel-in-
sulating layer. The etiology of MIH is not fully understood,
but it is known to be more prevalent in children that have
had more significant illness (609). There is some evidence
that there could be a genetic predisposition or increased
sensitivity to certain environmental stressors (308). The af-

FIGURE 15. Clinical appearance of hypomineralized teeth
resulting from high fluoride exposure during development.
In milder cases, the enamel has an opaque white appearance
(A) while in moderate to severe cases the enamel will be yellow
brown in color and have areas that break or wear away from
the tooth, often leaving round “punched-out” areas (B). These
changes in enamel color and strength as a result of hypomin-
eralization are seen in this thin section of a tooth viewed with
light microscopy that shows the outer opaque hypomineral-
ized enamel in contrast to the more normal translucent
enamel (C). Changes in enamel crystallite morphology and
packing (i.e., increased spacing) resulting from dental fluoro-
sis are illustrated in this high-resolution electron micrograph
of a fractured enamel sample with no etching before imaging
(SE 80,000K) (D).

Table 1. Environmental influences on enamel formation

Condition Enamel Phenotype

Fever Hypomineralization to marked hypoplasia
Starvation Enamel hypoplasia
Excess fluoride exposure Hypomineralization
Trauma Hypomineralization to marked hypoplasia
Hypoxia (e.g., severe cardiac defect) Hypomineralization to marked hypoplasia
Infection (congenital syphilis, cytomegalo virus, congenital rubella) Hypomineralization to marked hypoplasia
Tetracycline Hypoplasia
Low birth weight Hypoplasia
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fected areas of enamel have an increased protein content
and decreased mineral content.

XIII. GENETIC DISEASES IMPACTING
ENAMEL

There are thousands of genes expressed by ameloblasts
(318, 664) and ~100 different hereditary conditions associ-

ated with an enamel phenotype (642). The majority of he-
reditary conditions affecting enamel formation are syn-
dromes that have more generalized clinical manifestations
and phenotypes extending beyond the dental enamel. Many
of these conditions are caused by genes that have a known
function in ameloblasts. The pathophysiology resulting
from these genetic alterations and ameloblast dysfunction
most commonly results in a hypoplastic enamel phenotype.
For example, junctional epidermolysis bullosa is caused by
mutations in genes that are expressed by ameloblasts and
are important in cell-to-cell adhesion (e.g., COL17A1,
LAMB3, IGTA6, and ITGB4) (645). The abnormal pro-
teins produced from these genes result in fragile skin that
blisters. In ameloblasts, abnormal function of these proteins
results in cells that do not adhere to each other or to the
stratum intermedium, resulting in cell separation and
enamel hypoplasia (FIGURE 17). Interestingly, some muta-
tion in genes such as LAMB3 can be associated with a
syndrome such as epidermolysis bullosa or can result in
only an enamel phenotype (296, 453, 618).

A review of the known hereditary conditions associated
with enamel defects, identifying mutations in genes coding
for transcription factors, growth factors, matrix proteins,
ion channels, and proteinases, has been presented by
Wright et al. (642). For example, mutations in the DLX3
homeobox gene, which functions as a transcription factor,
cause the tricho-dento-osseous syndrome that is associated
with kinky curly hair at birth, dense-thick bone, generalized
thin and or pitted enamel, and large pulp chambers (651).
Mutations in the p63 gene, which is important in cell
growth, cause a variety of ectodermal dysplasia syndromes
(e.g., Rapp Hodkins syndrome, ectrodactyly, ectodermal
dysplasia cleft syndrome), all of which can have enamel
defects (302). Many of the genes known to be critical for
enamel formation were first identified by determining the
molecular basis of hereditary conditions that had associated

FIGURE 16. Molar incisor hypomineralization (MIH). The first per-
manent molar (A) has a creamy yellow brown coloration that is
mostly contained on the biting occlusal surface and has not resulted
in any enamel loss in this mild to moderate case. In contrast, this
first permanent molar (B) from the same individual has severe
enamel loss over much of the tooth. This child had a relatively
marked enamel phenotype of the permanent central incisors (C)
while the permanent lateral incisor (left area of the panel) appears
normal.

FIGURE 17. Abnormal enamel resulting from junctional
epidermolysis bullosa. Mutations in genes associated with
cell-to-cell adhesion, such as LAMA3, LAMB3, LAMC2,
and COL17A1, can result in junctional epidermolysis bul-
losa and abnormal enamel formation. The clinical pheno-
type resulting from mutations in these genes is a deficiency
in amount of enamel that can be localized in the form of
pitting (A). The variation in size of the pits is thought to be a
reflection of the numbers or groups of ameloblasts that are
lacking appropriate cell-to-cell attachment (B). [B from
Wright et al. (649a), with permission from Elsevier.] In
other cases the phenotype presents as a generalized thin-
ning of the enamel, as seen in the teeth of this individual
with the Herlitz form of junctional epidermolysis bullosa (C).
This individual also had failure of tooth eruption of the per-
manent dentition as seen in their panographic radiograph
(D). This is illustrative that the developing tooth epithelium
plays a role in tooth eruption as well as enamel formation.
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enamel phenotypes. A recent example of this was identifi-
cation of the ROGDI gene that is associated with
Kohlschütter-Tönz syndrome (510). This syndrome has a
distinct phenotype where all teeth exhibit a yellow-brown
discoloration of the enamel and a decreased level of miner-
alization. The ROGDI gene was not known to be critical
for enamel formation before this discovery. This gene is
thought to code for a leucine-zipper protein that is highly
expressed in the brain and spinal cord. Leucine zipper mo-
tifs are a structural feature common to transcription factors
and other types of proteins implicated as negative transcrip-
tion regulators. Another interesting association occurs in
Jalili syndrome where affected individuals have cone-rod
dystrophy in the eyes and enamel that has a brown appear-
ance and is hypomineralized. This condition is caused by
mutations in the cyclin and CBS domain divalent metal
cation transport mediator 4 gene (CNNM4) that may play
a role in metal ion transport (438). Cystic fibrosis (CF) is
caused by mutations in the CFTR gene that is involved in
regulating ion movement and pH regulation. Clinical eval-
uation of humans with CF found a high percentage of af-
fected individuals had associated enamel defects of varying
severity. In the CF mouse model (Cftr knockout), the inci-
sors had an opaque-white hypomineralized phenotype that
was 100% penetrant (59, 572, 646). This led to the discov-
ery that the Cftr gene was expressed by and important in the
regulation of pH in the developing mouse enamel organ and
provided a likely explanation for the enamel defects seen in
people with CF (63, 572). Other genes involved in ion trans-
port associated with hereditary conditions resulting in im-
mune dysfunction include the members of the Ca2� release-
activated Ca2� channels STIM1 and ORAI1 (145, 447).
Mutations in the Na�/K�/Ca2� exchanger NCKX4 (coded
by SLC24A4) are directly linked with AI, but less is known
about other disorders caused by mutations to SLC24A4
that include heart disease (222, 439).

Hereditary nonsyndromic conditions primarily affecting
the enamel are referred to as AI (639). The prevalence of AI
varies around world and is thought to occur in ~1/8,000
people, although there has only been one epidemiological
study ever conducted in the United States (638). AI de-
scribes a variety of disorders that have been classified based
on their clinical phenotype and mode of inheritance, as well
as based on the perceived mechanism leading to the enamel
defect, i.e., deficient matrix formation leading to hypopla-
sia, deficient crystal growth and mineralization during the
maturation stage causing a decreased level of maturation
and mineralization, or abnormal initiation of the enamel
crystallites with subsequent abnormal mineralization or hy-
pocalcification (639). Both hypomaturation and hypocalci-
fication are characterized by the predominant phenotype of
decreased enamel mineral or hypomineralization (see FIG-
URE 18). Enamel affected by these types of AI has greater
amounts of protein present compared with normal enamel
(647).

The first gene to be associated with these conditions was
AMELX, which codes for the most abundant enamel
matrix protein, amelogenin (552–555). There are now
known to be many allelic mutations in the AMELX gene
that cause different alterations in the protein and result in
different phenotypes (648). Missense mutations resulting
in single amino acid changes are often associated with a
hypomineralized enamel phenotype. Mutations causing a
loss of the carboxy terminus of the amelogenin protein all
result in a hypoplastic enamel phenotype. This is presum-
ably due to the critical functionality of the carboxy ter-
minus in amelogenin aggregation and orientation to the
developing enamel crystallites. These genotype-pheno-
type associations result from changes in the protein func-
tion due to the alteration of specific functional domains
with importance in cellular processes such as protein

FIGURE 18. Amelogenesis imperfecta. Amelogenesis im-
perfecta (AI) is caused by mutations in numerous genes
that lead to deficiencies in the amount of enamel and a
hypoplastic (A) and/or hypomineralized enamel phenotype
(B). [A from Nusier et al. (411a), with permission from
Elsevier.] The hypomineralized forms typically have retained
protein in the enamel, such as seen in this defective frac-
tured enamel resulting from a FAM83H mutation (C), that
is not normally seen in sound enamel. Lacy protein (arrow)
is seen on top of the enamel crystallites that make up the
underlying enamel prism or rod. In the hypomaturation AI
types, the amino acid content in the retained protein re-
sembles that of amelogenin having a high percentage of
proline residues, as seen in this enamel affected with AI
caused by a C4orf 26 mutation (D).
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self-assembly, protein-mineral interactions, and changes
in proteolytic processing of the mutant protein (423,
520).

Mutations causing AI have been identified in many of the
known enamel extracellular matrix proteins and protein-
ases, along with a number of other genes (TABLE 2), and
there will likely be additional AI-associated genes identified
in the future. The phenotypes are quite diverse, with some
causing more localized enamel defects, while others are as-
sociated with generalized phenotypes affecting all the teeth
and areas of enamel (641). Variability in phenotypes asso-
ciated with some AI types is thought to result from muta-
tions causing proteins to have a dominant negative effect
while others cause haploinsufficiency. This is the case with
mutations in the ENAM gene that can result in generalized
thin enamel hypoplasia (dominant negative effect) or bands
of pitted enamel (haploinsufficiency) (208, 293, 358).
When Enam is knocked out in the mouse, there is a com-

plete absence of any organized and mineralized enamel
layer (229). This is thought to be illustrative of the critical
role the enamelin protein plays in growth of the enamel
crystallites along the C-axis.

The protein functions for several of the more recently iden-
tified causative genes (e.g., C4ORF26, WDR72, FAM83H)
are not fully understood, and their involvement in enamel
formation was discovered by evaluation of families hav-
ing AI (TABLE 2). FAM83H mutations cause autosomal
dominant hypocalcified AI that is thought to be the most
common type of AI in North America (295). Phenotypes
associated with FAM83H mutations also can vary from
generalized to localized enamel defects depending on the
location and type of mutation and, presumably, the al-
tered function of the resulting protein (644). FAM83H
interacts with casein kinase 1 (CK1) and is thought to
play a role in keratin cytoskeleton organization and des-
mosomes in ameloblasts (307). Mutations of the WDR72

Table 2. Amelogenesis imperfecta: OMIM designations, genes, and phenotypes

Amelogenesis Imperfecta Gene/Locus Enamel Phenotype Mode of Inheritance

#301200, Amelogenesis imperfecta,
type IE; AI1E

AMELX Hypoplasia/hypomaturation depending on mutation
and protein effect

X-linked

#301201, Amelogenesis imperfecta,
hypoplastic/hypomaturation, X-
linked 2

Xq22-q28 Hypoplastic and/or hypomaturation X-linked

#104500, Amelogenesis imperfecta,
type IB; AI1B

ENAM Localized hypoplastic/generalized hypoplastic Autosomal dominant

#204650, Amelogenesis imperfecta,
type IC; AI1C

ENAM Generalized hypoplastic Autosomal recessive

#204700, Amelogenesis imperfecta,
hypomaturation type, IIA1; AI2A1

KLK4 Normal enamel thickness: hypomineralized orange
brown color

Autosomal recessive

#612529, Amelogenesis imperfecta,
hypomaturation type, IIA2; AI2A2

MMP20 Normal enamel thickness: hypomineralized orange
brown color

Autosomal recessive

#130900, Amelogenesis imperfecta,
type III; AI3

FAM83H Localized or generalized hypomineralized enamel Autosomal dominant

#613211, Amelogenesis imperfecta,
hypomaturation type, IIA3; AI2A3

WDR72 Hypomaturation: creamier/opaque enamel upon
eruption, discoloration and loss of tissue
posteruption

Autosomal recessive

#104510, Amelogenesis imperfecta,
type IV; AI4

DLX3 TDO-thin pitted hypoplastic Autosomal dominant

#614253, Amelogenesis imperfecta
AND gingival fibromatosis
syndrome; AIGFS

FAM20A Generalized hypoplastic and failure of tooth
eruption, gingival hypertrophy

Autosomal recessive

#104530, Amelogenesis imperfecta,
hypoplastic type IA, AI1A

LAMB3 Hypoplastic: failure to erupt and calcification of
pulp

Autosomal dominant

#614832, Amelogenesis imperfecta,
hypomaturaltion type, IIA4; AI2A4

C4ORF26 Hypomaturation AI Autosomal recessive

#616270, Amelogenesis imperfecta,
hypoplastic type, IF, AI1F

AMBN Generalized hypoplastic Autosomal recessive

#615887, Amelogenesis imperfecta,
hypomaturation type, IIA5, AI2A5

SLC24A4 Hypomineralized: mottled appearance Autosomal recessive

#Not listed, amelogenesis
imperfecta, hypomaturation type

AMTN Hypomineralized Autosomal dominant

#Not listed, amelogenesis
imperfecta, hypomaturation type

ACPT Generalized hypoplastic Autosomal recessive

#Not listed, amelogenesis
imperfecta, hypomaturation type

GPR68 Hypomaturation Autosomal recessive
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gene result in hypomaturation defects of the enamel that
are thought to be caused by abnormal endocytic vesicle
trafficking of matrix proteins and subsequent enamel
mineralization (278, 616). The C4orf26 gene is now
thought to be tooth-specific but not enamel-specific, and
it may play a role in Hap nucleation through its phos-
phorylated carboxy terminus (437).

Mutations in genes coding for the enamel proteinases
MMP20 and KLK4 both result in hypomineralized enamel
that has an orange to brown discoloration (207, 421). Ab-
normal function of these proteinases results in an increased
retention of protein in the affected enamel, as is common to
most of the hypomineralized forms of AI (647). Diminished
processing and removal of the enamel matrix proteins, such
and AMELX, AMBN, and ENAM, results in abnormal
crystallite growth and a decreased final mineral content of
the enamel (649).

As can be appreciated by the reader, discovering new genes,
and identifying genotype/phenotype relationships, is ongo-
ing. During the writing of this review paper three additional
genes were been associated with AI (TABLE 2). These are
mutations to amelotin (Amtn) (546), a protein expresses
exclusively during maturation-stage amelogenesis (255,
402), the pH-sensing G protein-coupled receptor GPR68
(440), and the testicular acid phosphatase ACPT (512) (TA-
BLE 2).

XIV. ENAMEL BIOMIMETICS

While enamel cannot regenerate itself or remodel like most
bones do, it is nevertheless an ideal candidate to apply novel
materials chemistry without the use of biology for its regen-
eration as it is completely acellular. Conventional restor-
ative methods in dentistry use artificial materials like com-
posites, ceramics, and amalgam to restore functional prop-
erties and are not discussed here. There are, however, a
series of approaches available or currently being tested in
the laboratory that can rebuild lost enamel structure
through remineralization (92). These so-called biomimetic
methods are designed to rebuild the intricate apatite crys-
tallite structure by application of calcium phosphate chem-
istry that stimulates the regrowth of the natural tissue and
ideally restores the mechanical and optical properties of
enamel. Due to the high organization and alignment of
fibrous apatite crystallites, enamel almost acts like a single
crystal. It reflects only a portion of visible light and is there-
fore translucent (267). To mimic the translucency of
enamel, the restorative process will need to rebuild the
highly organized structure of enamel to perfectly blend in
with the surrounding healthy tissue (267).

Initial damage on the enamel surface is often observed as
“white spots” which illustrate that the organized mineral
layer in enamel has been altered by a demineralization/

remineralization process that most likely has been triggered
by cariogenic acids produced by bacteria in the oral envi-
ronment (20, 456). White spot lesions or incipient caries
consist of a demineralized zone that is covered by a super-
ficial mineral layer often comprised of larger apatite crys-
tals, which reflect light and therefore appears white. The
common treatment for those lesions is the use of fluoride,
often in the form of an acidulated gel or dentifrice (68, 334,
360, 426, 589, 590). The mildly acidic composition of the
delivery system will dissolve the surface mineral layer and
allow fluoride ions to penetrate into the demineralized zone,
which leads to an increase in saturation levels towards ap-
atite. The reaction of this fluoride with calcium and phos-
phate ions then leads to the nucleation of flouroapatite crys-
tals (191). The growing apatite crystals rebuild the structure
of dental enamel fairly successfully and often fully restore
its mechanical and optical properties. The simple chemistry
of this approach, however, only works well on shallow
lesions that are in the order of tens of micrometers deep
(334, 353). Deeper lesions, and lesions that are infected
with bacteria or result from secondary caries underneath a
restoration, require a more sophisticated approach for re-
covery of form and function by the reintroduction of apatite
mineral. A number of studies are currently exploring novel
methods for biomimetic remineralization of such lesions
(92, 337).

A fundamental difficulty with the clinical application of
remineralization systems is the low solubility of calcium
phosphates, particularly in the presence of fluoride ions,
which makes it difficult to remineralize deeper lesions
(478). In saturated solutions, mineral will precipitate
randomly and thus not rebuild the enamel structure.
Therefore, stabilizing agents have been developed to ex-
tend the lifetime of calcium and phosphate ions in solu-
tion (417) and thus allow for a controlled mineralization
of apatite ideally through epitaxial growth of mineral
onto the damaged crystalline structure in carious enamel
(337). Casein, a protein present in milk, is such a stabi-
lizing agent that facilitates the formation of ACP (95).
The casein phosphopeptide-ACP complex has success-
fully been used for the remineralization of white spot
lesions and is recommended to treat deeper lesions when
a restorative treatment is not desired (408). Its success is
based on the delivery of casein-stabilized ACP droplets
that transform into apatite crystallites when in contact
with enamel crystallites (95). Based on these studies, a
number of other natural proteins, peptides, and synthetic
molecules have been developed that are able to stabilize the
saturated solutions and thus prevent heterogeneous nucle-
ation while promoting homogeneous nucleation (84, 92).

The delivery of such stabilizing agents is challenging in a
clinical setting as aqueous solutions will be washed out of
the site and saliva can interfere with the remineralization
process. The development of gels or cements that provide
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sustained release of mineralizing agents is desirable. A chi-
tosan gel has been explored that has shown great ability to
crystallize apatite nanofibers with similar orientation to
that observed in natural enamel (486). The ability of the gel
was further enhanced when amelogenin protein was added
as the thickness of the rebuilt enamel layer increased in in
vitro tests, taking advantage of the growth-promoting effect
of amelogenin (484, 486).

In addition to these methods that attempt to regenerate
enamel on decayed teeth, there are numerous studies that
emphasize the generation of enamel or an enamel-like tissue
in vitro and de novo (485, 654). These approaches promote
oriented crystal growth of fibrous apatite that mimics the
structure of enamel. EDTA is known as a chelating agent
and has been used to stabilize high concentrations of cal-
cium phosphate ions that upon water evaporation produce
a layer of nanometer-sized apatite crystals with high align-
ment, mimicking the structure of nonprismatic dental
enamel very well (80, 81). Clinical studies are currently
underway to explore this method by direct application to
demineralized teeth (617). A common challenge in testing
and evaluating these systems, however, is the lack of suit-
able standards of evaluation that allow for systematic com-
parison between the various approaches in vitro, leaving the
ultimate litmus test to the clinical trial which requires a
large number of subjects for statistical validation (353).

XV. CONCLUSIONS

In mammals, in nonpathological conditions, dental enamel
is the only epithelial-derived tissue that mineralizes. Amelo-
blasts are primarily responsible for the formation of
enamel, which is essentially a Hap-based material contain-
ing less than 5% organic material by weight. It is because of
its cellular origins that an extracellular matrix has evolved,
comprised of proteins with little homology to any other
animal proteins, to be capable of guiding the formation of a
unique hierarchical structure with a highly ordered and very
repetitive patterning. In normal situations, enamel’s distinc-
tive biomechanical properties allow it to function for the
entire lifespan of an animal, despite the amount of wear
resulting from mastication, clenching and grinding, and dis-
ease such as caries. Ameloblasts have a very short lifespan,
relative to the life of the organism, to produce the avascular
enamel that, once formed, has no reparative abilities.
Amelogenesis involves a large number of activities includ-
ing the formation of a temporary proteinaceous matrix con-
ducive to mineralization followed by the removal of this
matrix by endocytosis, ion transport and pH regulation,
and apoptosis. Failure during any one of these stages of
amelogenesis may result in pathologies impacting enamel
health. We have summarized the literature related to amelo-
genesis, with a greater emphasis on mineralization events
occurring largely during the maturation stage. We have also
reviewed enamel pathologies that have been linked to

known genes and discussed the role of fluoride-based and
biomimetic approaches to enamel repair and conservation.

There are, however, many voids in our understanding of
amelogenesis. There is an increasing need to define experi-
mentally the transport and movement of ions in the enamel
organ and to gain a deeper understanding of key functions
as they relate to amelogenesis. For example, phosphate
transport activities and molecular mechanisms responsible
for pH regulation remain poorly understood. There is also
limited information to explain ameloblast movements that
result in enamel’s remarkable prismatic architecture, al-
though recent studies partly attribute this to the extensive
remodeling of ameloblast junctional complexes during
amelogenesis (31). It is also unknown if the small amounts
of protein retained in mature enamel are ordered or not,
and a recent paper has provided evidence that individual
enamel crystals occlude some matrix protein (454), which
may also contribute to enamel’s unique biomechanical
properties. It appears reasonable to suggest that remnant
proteins help to achieve stiffness and hardness required for
the longevity of the tooth (198). Finally, there is current
interest in generating an enamel biomimetic for future den-
tal clinical applications, with some of this work investigat-
ing amelogenin-based peptides in mineralizing solutions
(194, 203, 260, 387, 432, 485). Future research in these
areas will have an immensely positive impact on under-
standing enamel biology and disease.
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