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Abstract

Since the discovery of sickle cell disease (SCD) in 1910, enormous strides
have been made in the elucidation of the pathogenesis of its protean com-
plications, which has inspired recent advances in targeted molecular thera-
pies. In SCD, a single amino acid substitution in the β-globin chain leads
to polymerization of mutant hemoglobin S, impairing erythrocyte rheol-
ogy and survival. Clinically, erythrocyte abnormalities in SCD manifest in
hemolytic anemia and cycles of microvascular vaso-occlusion leading to end-
organ ischemia-reperfusion injury and infarction. Vaso-occlusive events and
intravascular hemolysis promote inflammation and redox instability that lead
to progressive small- and large-vessel vasculopathy. Based on current evi-
dence, the pathobiology of SCD is considered to be a vicious cycle of four ma-
jor processes, all the subject of active study and novel therapeutic targeting:
(a) hemoglobin S polymerization, (b) impaired biorheology and increased
adhesion-mediated vaso-occlusion, (c) hemolysis-mediated endothelial dys-
function, and (d) concerted activation of sterile inflammation (Toll-like re-
ceptor 4– and inflammasome-dependent innate immune pathways). These
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molecular, cellular, and biophysical processes synergize to promote acute and chronic pain and
end-organ injury and failure in SCD. This review provides an exhaustive overview of the current
understanding of the molecular pathophysiology of SCD, how this pathophysiology contributes
to complications of the central nervous and cardiopulmonary systems, and how this knowledge is
being harnessed to develop current and potential therapies.

INTRODUCTION

Sickle cell disease (SCD) is an autosomal-recessive genetic disorder that affects approximately
100,000 people in the United States and millions worldwide (1–3). According to the systematic
analysis of the Global Burden of Disease Study (4), 3.2 million people live with SCD, 43 million
people have sickle cell trait (i.e., are carriers of the mutation), and 176,000 people die of SCD-
related complications per year. SCD is an umbrella term for all mutations in the β-globin gene
that precipitate the same clinical syndrome (1). Sickle cell anemia (discussed together with other
sickling disorders for the reader’s convenience in this review) is the most common form and
accounts for 70% of cases of SCD in patients of African ethnicity (2, 3). Sickle cell anemia is
caused by homozygosity of the beta-S (βS) allele (located on chromosome 11p15.5), which differs
from the wild-type β-allele by a single nucleotide polymorphism dbSNP Rs334(T;T) in which
GTG is substituted for GAG in the sixth codon of the β-globin gene (1, 3, 5, 6). This leads
to replacement of a hydrophilic glutamic acid residue (Glu) with a hydrophobic valine residue
(Val) at the sixth position in the β-globin chain, resulting in a mutated hemoglobin tetramer HbS
(α2β

s
2) in the erythrocytes of individuals with sickle cell anemia (7, 8). Homozygous inheritance

of the βS mutation (HbSS) or coinheritance of βS with other mutations such as βC (HbSC), βD

(HbSD), βO (HbSO/Arab), βE (HbSE), or a β-thalassemia allele (HbS/β-thal0 or HbS/β-thal+)
leads to other forms of SCD via multiple interlinked molecular and cellular mechanisms, which
are described in the following sections. As shown in Figure 1, over the past 7 decades, scientists
have characterized three major pathobiological processes (HbS polymerization, vaso-occlusion,
and hemolysis-mediated endothelial dysfunction) that drive clinical disease; recently, a fourth
pathway, sterile inflammation, has emerged.

HEMOGLOBIN S POLYMERIZATION

Intraerythrocytic HbS deoxygenation in tissues with high oxygen demand promotes the exposure
of hydrophobic motifs on individual deoxygenated (T-state) HbS tetramers (1, 7). As a result, βS-
globin chains on different deoxygenated HbS tetramers bind to each other to hide the hydrophobic
motifs, thus initiating the nucleation of an HbS polymer. These HbS polymers grow rapidly to
form long fibers that increase cellular rigidity and distort the erythrocyte membrane, leading
to erythrocyte sickling, cellular energetic failure and stress, dehydration, impaired rheology and
premature hemolysis (1, 7, 9) (Figure 1a). The rate of polymerization is proportional to the
intraerythrocytic concentration of HbS (to the 34th power) and inversely proportional to the
concentration of fetal Hb (HbF), which both replaces HbS and interferes with HbS polymerization
(7, 10, 11). Co-inheritance of certain genetic factors or mutations such as hereditary persistence
of HbF or α-thalassemia or βC-allele alongside βS may modulate disease severity (1, 12). As
shown in Figure 2 and discussed in the section titled Current and Future Therapies Targeting
Sickle Cell Disease Pathobiology, the improved understanding of the biophysical and biomolecular
mechanism of HbS polymerization has inspired the development of several therapeutic strategies
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Figure 1
Molecular pathophysiology of sickle cell disease. (a) A single-nucleotide polymorphism in the β-globin gene leads to substitution of
valine for glutamic acid at the sixth position in the β-globin chain. Following deoxygenation, the mutated hemoglobin (HbS) molecules
polymerize to form bundles. The polymer bundles result in erythrocyte sickling (clockwise), which in turn results in (b) impaired
rheology of the blood and aggregation of sickle erythrocytes with neutrophils, platelets, and endothelial cells to promote stasis of blood
flow, referred to as vaso-occlusion. Vaso-occlusion promotes ischemia-reperfusion (I-R) injury (clockwise). (a) Hemoglobin (Hb)
polymer bundles also promote hemolysis or lysis of erythrocytes (counterclockwise), which (c) releases cell-free Hb into the blood
circulation. Oxygenated Hb (Fe2+) promotes endothelial dysfunction by depleting endothelial nitric oxide (NO) reserves to form
nitrate (NO3

−) and methemoglobin (Fe3+). Alternatively, Hb can also react with H2O2 through the Fenton reaction to form hydroxyl
free radical (OH•) and methemoglobin (Fe3+). Also, NADPH oxidase, xanthine oxidase (XO), and uncoupled endothelial NO synthase
(eNOS) generate oxygen free radicals to promote endothelial dysfunction. Methemoglobin (Fe3+) degrades to release cell-free heme
(counterclockwise), which is a major erythrocyte damage-associated molecular pattern (DAMP). (d) Reactive oxygen species (ROS)
generation, Toll-like receptor 4 (TLR4) activation, neutrophil extracellular trap (NET) generation, release of tissue or cell-derived
DAMPs, DNA, and other unknown factors (?) triggered by cell-free heme or I-R injury can contribute to sterile inflammation by
activating the inflammasome pathway in vascular and inflammatory cells to release IL-1β. Finally, sterile inflammation further
promotes vaso-occlusion through a feedback loop by promoting adhesiveness of neutrophils, platelets, and endothelial cells.
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Figure 2
Current and future therapies targeting molecular pathobiology of sickle cell disease. (a) Drugs capable of modulating hemoglobin (Hb)
polymerization, erythrocyte dehydration, and Hb oxygen affinity. (b) Drugs capable of preventing vaso-occlusion by inhibiting adhesive
interactions between leukocytes, platelets, or endothelial cells and erythrocytes. (c) Drugs capable of preventing endothelial dysfunction
by scavenging Hb and reactive oxygen species (ROS) or promoting nitric oxide (NO) synthesis. (d) Drugs capable of preventing sterile
inflammation by scavenging heme and ROS, digesting neutrophil extracellular traps (NETs), inhibiting Toll-like receptor 4 (TLR4) or
inflammasome activation, and inhibiting IL-1β-dependent innate immune signaling. Drugs approved by the US Food and Drug
Administration (hydroxyurea and L-glutamine) are shown in bold font.

for SCD that interfere at different stages of intraerythrocyte HbS polymerization and altered
biorheology.

VASO-OCCLUSION

Vaso-occlusion, or blood vessel occlusion, leading to ischemia is the predominant pathophys-
iology responsible for acute systemic painful vaso-occlusive crisis (VOC) and the requirement
for emergency medical care by SCD patients (13). Intravital imaging studies done in transgenic
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humanized SCD mice and in vitro flow chamber studies done with SCD human blood over the
past decade have contributed to the current understanding of vaso-occlusion as the interplay
among impaired blood rheology, increased adhesiveness of erythrocytes with inflammatory cells
and vascular endothelium, and hemostatic activation (14). The blood rheology is dictated by the
hematocrit, plasma viscosity, and erythrocyte deformability (9). The increased plasma viscosity,
which occurs as a result of chronic hemolysis and reduced sickle erythrocyte deformability due
to Hb polymerization and dehydration, contributes to impaired flow of blood through capillar-
ies and postcapillary venules of tissues with high oxygen demand (9). Poorly deformable sickle
erythrocytes may become mechanically sequestered in the microcirculation to promote transient
vaso-occlusion (1, 7). Importantly, sickling-dependent damage of erythrocyte membranes also
promotes exposure of adhesion molecules and binding motifs not normally expressed on erythro-
cytes, such as phosphatidyl serine (PS), basal cell adhesion molecule-1/Lutheran (B-CAM-1/Lu),
integrin-associated protein (IAP), and intercellular-adhesion-molecule-4 (ICAM-4) (7, 9, 15). As
a result of chronic anemia, the bone marrow undergoes stress reticulocytosis and releases imma-
ture erythrocytes or reticulocytes (1), which are decorated with adhesion molecules such as α4β1
integrin (VLA-4) and CD36 (15). Recent studies performed in SCD mice have also established
a major role for adhesive interactions of erythrocytes and reticulocytes with inflammatory and
endothelial cells in promoting vaso-occlusion in SCD (13, 14, 16, 17).

Endothelial dysfunction and sterile inflammation (discussed below), which are hallmarks of
SCD, may contribute to upregulation of selectins (P- and E-), vascular-cell-adhesion-molecule-1
(VCAM-1), ICAM-1, and major leukocyte chemoattractants such as KC (in mice) or interleukin-8
(IL-8) (in humans) on endothelial cells (14, 17, 18). The inflammatory milieu in SCD may also
promote activation of neutrophils, monocytes, and platelets, leading to their increased adhesion
to each other and to activated endothelium (14, 17, 18). Indeed, SCD patients are known to
have elevated levels of neutrophils, monocytes and platelets at baseline, and elevated levels of
circulating neutrophil-platelet and monocyte-platelet aggregates in SCD human blood correlate
with disease severity (19–28). Also, thrombocytopenia is a major predictor of progression of VOC
in SCD patients to the potentially lethal lung injury known as acute chest syndrome (ACS) (29),
suggesting a role for platelet sequestration at sites of vaso-occlusion (29–31). These clinical findings
supported a role for inflammatory cells in vaso-occlusion and served as the impetus for several
in vivo studies in transgenic SCD mice that led to the development of the current multicellular
paradigm of vaso-occlusion (14, 17).

Epidemiological evidence (1, 32) indicates that VOC is frequently initiated by an inflam-
matory or environmental stimulus, including infection, hypoxia, dehydration, acidosis, or other
unidentified factors. Inspired by this clinical evidence, in vivo studies have been primarily
conducted by challenging SCD mice with an inflammatory stimulus such as TNFα (33), heme
(34), Hb (34), hypoxia (35, 36), epinephrine (37), or lipopolysaccharide (LPS) (16, 34) to
trigger vaso-occlusion. Importantly, these in vivo studies suggest that the cellular and molecular
mechanisms of vaso-occlusion are also dictated by the type of organ or vascular bed. Using
intravital imaging, Frenette and coworkers found that vaso-occlusion in the cremaster muscle
microcirculation of TNFα-challenged SCD mice occurred primarily in postcapillary venules (13,
14, 38). Cremaster vaso-occlusion was initiated by P-/E-selectin-dependent neutrophil rolling
followed by CD11a-CD18 (LFA-1) and CD11b-CD18 (Mac-1) β2-integrin-mediated firm
arrest, E-selectin-dependent clustering of Mac-1 on arrested neutrophils, and capture of sickle
erythrocytes by adhered neutrophils through binding of Mac-1 clusters to an unknown ligand
on erythrocytes (13, 14, 38). Inhibition or deletion of endothelial E-selectin (33, 39), neutrophil
Mac-1 (33, 40), CXCR2 receptor for endothelial-expressed chemokine KC (CXCL-1) (41), or
reduction in circulating neutrophil counts using hydroxyurea (42) attenuated vaso-occlusion in
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the cremaster microcirculation of SCD mice. These studies suggested a role for erythrocyte–
neutrophil–endothelium adhesion in promoting vaso-occlusion in the systemic microcirculation.
However, recent evidence also supports a role for platelet–neutrophil–endothelium adhesion
in promoting systemic vaso-occlusion. Platelet nucleation on arrested neutrophils leading to
platelet–neutrophil aggregation was also shown to promote vaso-occlusion in the cremaster
microcirculation of TNFα-challenged SCD mice, which was mediated by P-selectin and Mac-1
on activated platelets and neutrophils, respectively (43). P-selectin upregulation and Mac-1
activation on platelets and neutrophils, respectively, was shown to be dependent on phosphory-
lation of serine/threonine kinase AKT2, as well as nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase 2 (NOX2)-mediated reactive oxygen species (ROS) production (44).

The dependency of the cellular and molecular mechanisms of vaso-occlusion on the type of
vascular bed is further supported by in vivo studies of skin, intestinal, and bone marrow circu-
lation in mice. Unlike cremaster microcirculation, intravital imaging studies performed in the
mucosal–intestinal microcirculation of SCD mice revealed P-selectin-dependent direct adhesion
of sickle erythrocytes to activated endothelium in the postcapillary venules (45). In some studies
(36, 37, 46), sickle erythrocyte adhesion to inflamed endothelium was studied in the bone marrow
or skin microcirculation of non-SCD strains of mice bearing adoptively transferred, fluorescently
labeled human or mice sickle erythrocytes. In one adoptive transfer study, sickle erythrocytes were
observed to undergo P-selectin-dependent adhesion to endothelium in the bone marrow venules
of eNOS-deficient mice exposed to hypoxia (36). In a different adoptive transfer study, cAMP-
dependent protein kinase A and MEK-dependent ERK1/2 activation, which lead to binding of
ICAM-4 on sickle erythrocytes to αvβ3 integrin on activated endothelium, were shown to mediate
sickle erythrocyte sequestration in the skin microcirculation of epinephrine- or TNFα-challenged
nude mice (37, 47–50). Interestingly, αvβ3 integrin also appeared to contribute to erythrocyte
adhesion to endothelium in the skin microcirculation of nude mice (37, 47–50); however, in-
hibition of αvβ3 integrin was ineffective in preventing sickle erythrocyte adhesion in the bone
marrow microcirculation of eNOS-deficient mice (36). Although studies done with adoptively
transferred, fluorescently labeled sickle erythrocytes in non-SCD mice suggest a primary role for
erythrocyte–endothelium adhesion over neutrophil–platelet or neutrophil–erythrocyte adhesion,
they did not address the likelihood of erythrocytes also binding to neutrophils or platelets bound to
endothelium. Regardless of these limitations, these studies suggest that the cellular and molecular
paradigm of vaso-occlusion is not identical in all vascular beds.

The role for neutrophils in vaso-occlusive pathophysiology is further supported by the recent
finding that translocation of Toll-like receptor 4 (TLR4) and TLR2 ligands or LPS from the
gut into blood circulation contributes to increases in circulating numbers of proinflammatory
neutrophils and to Mac-1-dependent neutrophil–erythrocyte aggregation in the cremaster mi-
crocirculation of TNFα-treated SCD mice (51). In support of this finding (16), our group has
shown that intravenous challenge with nanogram levels of LPS promoted vaso-occlusion in the
lung arterioles of SCD but not control mice. We found that vaso-occlusion in the lung involved
entrapment of P-selectin-dependent platelet–neutrophil aggregates in bottle-necks located at the
junction of pulmonary arterioles and capillaries (16). These aggregates may form in situ or arrive
in the lung as microemboli and impair pulmonary blood flow, and were observed to consist of
erythrocytes trapped within these platelet–neutrophil aggregates (16). Remarkably, therapeutic
blockade of P-selectin with an inhibitory Ab prevented platelet–neutrophil aggregate–mediated
lung vaso-occlusion and restored pulmonary blood flow (16). Another study identified a role for
endothelial E-selectin in promoting lung injury in SCD mice following pneumococcal pneumonia
and sepsis (52). In addition to the molecular interactions discussed above, in vitro flow chamber
studies performed with SCD human blood or isolated cells also suggest a role for VLA-4 on
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reticulocytes binding to VCAM-1 on endothelial cells, as well as for GPIbα on platelets binding
to Mac-1 on neutrophils, in promoting vaso-occlusion; however, in vivo evidence supporting a
role for these interactions is scarce (15, 16, 53). To date, we have been unable to directly evaluate
a vaso-occlusive event at the cellular and microvascular levels in humans.

Based on the above discussion, there seem to be diverse cellular and molecular mechanisms
contributing to vaso-occlusion of hemoglobin S polymer–containing erythrocytes. The relative
roles of leukocytes and platelets versus direct endothelial interactions with sickle erythrocytes, as
well as the roles of different adhesion molecules, likely vary across vascular beds and with different
inflammatory stimuli. The varied roles of platelets, neutrophils, or sickle erythrocytes in initiating
and propagating vaso-occlusion in the lung versus muscle or bone marrow could be a consequence
of the hypoxic environment of these vascular beds compared to the oxygen-rich environment in
the lung. This diversity in cellular and molecular pathophysiology also suggests the need for
intravital imaging studies to identify the cellular and molecular mechanisms of vaso-occlusion in
other hypoxic organs, such as the liver, kidney, brain, or heart, that are affected in SCD, both in
mouse models and, ultimately, in humans, using novel translational imaging methodologies (32).

The current understanding of vaso-occlusive pathophysiology has inspired several therapeutic
approaches (Figure 2b) to prevent vaso-occlusive morbidity in SCD; these approaches are dis-
cussed in the section titled Current and Future Therapies Targeting Sickle Cell Disease Patho-
biology. In addition to impaired rheology and cellular adhesion, activation of both extrinsic and
intrinsic pathways of coagulation has also been shown to contribute to vaso-occlusion in SCD,
and activated leukocytes, platelets, and endothelial cells have been implicated in progression of
SCD-related coagulopathy (54). The discussion on coagulopathy is beyond the scope of this re-
view, and the reader is advised to refer to recent reviews on this topic for more details (54–56).
Also, a recent study has identified a protective role for a hemeoxygenase-1 (HO-1)-containing
subset of circulating monocytes in vaso-occlusion, suggesting that elevated numbers of HO-1-
rich patrolling monocytes in blood may provide protection from VOC (57); however, additional
studies are needed to understand the molecular mechanism behind this protection and how it can
be harnessed to attenuate the vaso-occlusive morbidity of SCD.

ENDOTHELIAL DYSFUNCTION

As patients with SCD live longer in high-income countries, the chronic impact of sustained
hemolytic anemia and episodic vaso-occlusive events results in the progressive development of
end-organ complications (58–70). As described above, HbS-containing erythrocytes with intra-
cellular Hb polymer are less deformable and become entrapped within the microcirculation, re-
sulting in episodic and sustained vaso-occlusion (1, 71, 72). Additionally, the polymer-containing
erythrocytes are subject to intravascular and extravascular hemolysis, causing chronic anemia with
Hb levels ranging from 6–11 g/dl (65, 73, 74). As discussed below, the process of intravascu-
lar hemolysis directly damages blood vessels (17, 75), and the resulting anemia exerts additional
stress on the cardiovascular system (Figure 3) by chronically increasing cardiac output, ventricular
chamber dilation, and ventricular wall stress (76, 77). The intrinsic rate of hemolytic anemia is
relatively stable within an individual patient with SCD under steady-state (non-crisis) condition
and is largely determined by the hemoglobin genotype (HbS, C, etc.) and HbF levels (74, 78).
Patients with higher rates of hemolysis have lower steady-state Hb levels and are more likely to
develop vascular injury and organ dysfunction as they age, manifesting as pulmonary hypertension,
diastolic left heart disease, and renal dysfunction (proteinuria, albuminuria, and chronic kidney
dysfunction) (62, 64, 65, 70, 79). Over time, patients develop vascular stiffness, which, combined
with the high stroke volume in the setting of anemia, increases systolic systemic blood pressure and
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Figure 3
Endothelial dysfunction in sickle cell disease. Anemia and intravascular hemolysis lead to pulmonary vascular
disease and diastolic heart dysfunction, both of which contribute to morbidity (reduced exercise capacity)
and death (75). Figure adapted with permission from Reference 75. Abbreviations: eDAMP, erythrocyte
damage-associated molecular pattern; PA, pulmonary artery; PVR, pulmonary vascular resistance; RA, right
atrium; RV, right ventricle.

pulse pressure. Elevated systolic systemic blood pressures have been identified as an independent
risk factor for the development of pulmonary hypertension, hypoxemia, diastolic heart dysfunc-
tion, chronic kidney injury, silent cerebral infarcts (SCI), and infarctive stroke (63, 67, 80–82). In
addition to the effects of chronic anemia, intravascular hemolysis directly causes vascular injury
and endothelial dysfunction (Figure 1c) and is linked to elevated pulse pressure (67). Because
oxy-Hb reacts with nitric oxide (NO) in an extremely fast and essentially irreversible reaction to
form inert nitrate, the release of intraerythrocytic Hb into plasma during intravascular hemolysis
promotes NO scavenging reactions and impairs NO-dependent basal vasodilation. Equation 1
shows the dioxygenation reaction of NO with oxy-Hb to form nitrate and methemoglobin:

NO + HbFe2+ → NO3
−(nitrate) + HbFe3+. 1.

Cell-free Hb also promotes ROS formation, critically altering the vascular redox balance of
steady-state NO production to ROS production (decreasing NO–ROS balance). NO is required
for vasodilation and regulates platelet function, inflammation, cellular smooth muscle prolif-
eration, and oxidative stress (83), and NO scavenging by cell-free plasma hemoglobin impairs
endothelial function and promotes proliferative vasculopathy of the pulmonary and systemic
vasculature (74, 84–87). The dysregulated redox balance may also oxidize critical enzymes in the
vasculature, such as soluble guanylate cyclase, the target for NO (88). This may promote further
endothelial dysfunction as the target for NO signaling is blocked. In addition to its primary
effects on endothelial function and chronic vascular injury, Hb is also oxidized and degrades to
release free heme and heme iron. Hb and heme activate innate immune pathways, through TLR4
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and inflammasome signaling, discussed in the next section (34, 89, 90). These hemolysis products
are considered erythrocyte damage-associated molecular patterns (eDAMPs) that promote and
propagate sterile inflammation and oxidative stress, further impairing the redox balance (18).
Release of Hb and erythrocyte ADP during hemolysis stimulates platelet activation and activates
coagulation pathways, further contributing to vascular thrombosis and pulmonary hypertension
(91–94). Interestingly, both hemolysis—through the release of eDAMPs—and SCD-related
vaso-occlusive events—through tissue injury and release of cellular DAMPs—have the potential
to activate sterile inflammation pathways (discussed in the next section), an active area of current
investigation (95, 96). Based on the current understanding of hemolysis-mediated endothelial
dysfunction in SCD, several therapeutic approaches have been proposed or approved by the US
Food and Drug Administration (FDA) (Figure 2c) and are discussed below.

STERILE INFLAMMATION

Vaso-occlusion contributes to ischemia-reperfusion injury, which, along with release of eDAMPs,
promotes the progression of sterile inflammation (Figure 1d) in SCD (14, 17, 18). Heme (ferrous
protoporphyrin IX) and its oxidized form, hemin (ferric protoporphyrin IX), released following
oxidation of Hb (discussed in the previous section), are potent TLR4 agonists that contribute to a
proinflammatory and procoagulant state in SCD, characterized by activated leukocytes, platelets,
endothelial cells, tissue factor, cytokine storm, NO depletion, and generation of ROS (18, 34,
54, 89, 97–99). Intravenous administration of cell-free heme has been shown to promote acute
lung injury and pulmonary vascular congestion in SCD mice, which were prevented by thera-
peutic inhibition or genetic deletion of endothelial TLR4 (89). In another study (34), heme was
shown to promote endothelial activation, leading to increased neutrophil adhesion and vaso-
occlusion in skin venules, NOX-mediated ROS generation, and death in SCD mice, all of which
were also dependent on endothelial TLR4. Heme-laden erythrocyte-derived microparticles have
been shown to promote endothelial activation, ROS generation, and vaso-occlusion in the kidney
of SCD mice by adhering to and delivering heme to endothelial cells (100). Heme has also been
shown to activate TLR4 in macrophages to promote release of TNFα, KC, and leukotriene B4
(LTB4) (99, 101, 102). Thus, heme seems to promote sterile inflammation in SCD by stimulating
TLR4-dependent innate immune signaling in endothelial and mononuclear cells.

Interestingly, heme appears to act through G-protein-coupled-receptor (GPCR)-dependent
signaling to promote neutrophil migration, oxidative burst, neutrophil extracellular trap (NET)
generation, IL-8 production, and increased neutrophil survival (103–106); however, the GPCR
receptor for heme on neutrophils remains unknown (99). Activated neutrophils are known to re-
lease NETs, mesh-like structures composed of decondensed chromatin decorated with neutrophil
proteases and citrullinated histones (107). NETs are released from neutrophils under diverse in-
flammatory conditions and promote the activation of innate immune responses, leading to tissue
injury (107). Most recently (97), heme was shown to promote an oxidative burst leading to release
of NETs by neutrophils in the lung microcirculation of TNFα-challenged SCD mice; NET re-
lease was inhibited following administration of the plasma heme scavenger hemopexin. Indeed,
circulating markers of NETs, such as nucleosomes and elastase-α1-antitrypsin, are significantly
elevated in the plasma of SCD patients at steady state, and the levels are further increased following
VOC (108).

In a recent study (16), we showed that TLR4 inhibition led to reduction of P-selectin-PSGL-
1-dependent platelet–neutrophil aggregation in SCD human blood flowing through microfluidic
flow channels in vitro. Although it is unclear how heme promotes platelet activation in SCD,
one study showed that heme enhances ADP- and epinephrine-dependent platelet aggregation
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(109). SCD patients are also known to be at higher risk for contracting bacterial infections com-
pared to healthy control humans (110, 111). However, the molecular pathophysiology that con-
tributes to this susceptibility to infections remains incompletely understood. Recently, heme was
shown to promote cytoskeletal disruption leading to impaired bacterial clearance; phagocytosis;
and migration by monocytes, macrophages and neutrophils. These alterations were dependent on
guanine nucleotide exchange factor DOCK8-mediated activation of the GTP-binding Rho fam-
ily protein Cdc42, suggesting a role for heme in promoting susceptibility to bacterial infections
in SCD (112). Taken together, these studies suggest that cell-free heme contributes to TLR4
activation in mononuclear leukocytes and endothelial cells, generation of ROS by vascular cells,
and NET generation by neutrophils in SCD (Figure 1d).

Besides release of cell-free heme, vaso-occlusion also contributes to progression of sterile
inflammation in SCD (25, 35, 71, 72, 113–115). Repeated episodes of vaso-occlusion and reperfu-
sion contribute to ischemia-reperfusion injury by promoting transient hypoxia, ROS generation,
microvascular dysfunction, activation of innate and adaptive immune responses, and cell death
(25, 35, 71, 72, 113–115). ROS-dependent damage of cellular proteins, lipids, DNA, and ribonu-
cleic acids contributes to activation of cell death programs such as apoptosis, necrosis, autophagy,
and NETosis (release of NETs by neutrophils). This in turn contributes to release of various
tissue- and cell-derived DAMPs (115–117). These DAMPs promote the innate immune response
by priming TLR signaling in endothelial cells and leukocytes, leading to activation of NF-κB,
mitogen-activated-protein-kinase (MAPK), and type-I interferon pathways; this results in induc-
tion of proinflammatory cytokines and chemokines (95). For example, the DAMP HMGB1 is
significantly elevated in the plasma of SCD patients and mice, and its levels further increase fol-
lowing VOC or hypoxia–reoxygenation in SCD patients and mice, respectively (118). The elevated
levels of HMGB1 were also shown to promote TLR4 activity in the plasma of both SCD patients
and mice (118).

Studies conducted over the past decade have identified inflammasome pathways as key regu-
lators of sterile inflammation (95, 119, 120). Nucleotide-binding domain and leucine-rich repeat
receptors (NLRs) or absent in melanoma 2 (AIM2)-like receptors (ALRs) are major components
of the inflammasome complex. Inflammasomes are multimeric cytoplasmic pattern recognition
receptor complexes that are activated by cell- and tissue-derived DAMPs, ROS, TLR4 activation,
double-stranded DNA, NET fragments, and several unknown cell- or tissue-derived danger
signals. Following activation, inflammasomes process and release activated IL-1β and IL-18
(119–121). Once released, IL-1β binds to IL-1 receptor (IL-1R) on leukocytes and vascular cells,
promoting a cascade of downstream events that lead to activation of neutrophils and platelets
and upregulation of E-selectin, P-selectin, VCAM-1, ICAM-1, and chemokines such as IL-8 in
endothelial cells, all of which promote vaso-occlusion (14, 17) (Figure 1). Readers are advised to
refer to more detailed reviews on the role of inflammasomes in sterile inflammation (119, 120). The
NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is the most widely
studied inflammasome complex; it consists of NLRP3, apoptosis-associated speck-like protein
containing a caspase recruitment domain (ASC), and caspase-1 (119). Recently (96), cell-free heme
was shown to promote NLRP3 inflammasome activation in LPS-primed macrophages, leading
to IL-1β release. Deletion of NLRP3, ASC, caspase-1, or IL-1R attenuated hemolysis-induced
lethality in mice, suggesting a role for NLRP3 inflammasome activation and systemic release of
IL-1β in promoting hemolysis-dependent sterile inflammation (96). NLRP3 inflammasome ac-
tivation in macrophages was dependent on heme-induced NOX2 activation, mitochondrial ROS
production, and K+ efflux (96). In a recent study, NLRP3 and IL-1β were significantly elevated
in peripheral blood mononuclear cells (PBMCs) of SCD patients compared to control human
subjects, and incubation of control human PBMCs with sickle erythrocytes led to significant
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increases in expression of NLRP3, caspase-1, IL-1β, and IL-18 (122). Serum levels of IL-1β,
IL-6 and IL-8 have been shown to be significantly elevated in SCD patients compared to healthy
control subjects (123). Although NLRP3 and other inflammasome complexes are expressed in
monocytes, macrophages, neutrophils, platelets, and endothelial cells (96, 124–127); heme is a po-
tent inflammasome activator (96); and IL-1β is significantly elevated in the serum of SCD patients
(122, 123), the contribution of inflammasome activation and IL-1β release by these different cell
types in promoting sterile inflammation in SCD remains poorly understood. Improved under-
standing of these pathways in SCD can be harnessed to design improved therapies, as described in
Figure 2d and the next section.

CURRENT AND FUTURE THERAPIES TARGETING SICKLE CELL
DISEASE PATHOBIOLOGY

As shown in Figure 2, the current understanding of the cellular, molecular, and biophysical patho-
biology of SCD has inspired several current and potential future therapeutic approaches to prevent
disease morbidity. Readers are advised to refer to detailed reviews on these potential therapies (13,
47, 50, 53, 128). These therapies attenuate disease severity by interfering with different facets of
SCD pathobiology, described above and in Figure 1. As shown in Figure 2a, some of the approved
or potential therapies prevent HbS polymerization and rescue erythrocyte deformability by in-
ducing HbF production (hydroxyurea, metformin, and sodium butyrate), allosterically modifying
HbS oxygen affinity (5-hydoxymethyl-2-furfural or Aes-103), preventing erythrocyte dehydration
(senicapoc), or serving as carbon monoxide (CO) donors (PEGylated bovine carboxyhemoglobin)
(128). In addition to antipolymerization or antisickling therapies, several antiadhesion therapies are
approved or being tested that seek to inhibit the multicellular adhesion cascade of vaso-occlusion
(Figure 2b). These targeted therapies are variously directed at P-selectin (crizanlizumab),
E-selectin (rivipansel), Mac-1 (intravenous immunoglobulin), platelet glycoprotein Ibα (CCP-
224), or mitogen-activated-protein-kinase inhibitors (MEK inhibitors) to prevent erythrocyte
adhesion. Other proposed or FDA-approved therapies may prevent endothelial dysfunction
by scavenging cell-free Hb (haptoglobin), promoting NO production (hydroxyurea, oral or
IV nitrite, inhaled NO, and oral arginine), or reducing oxidative stress (L-glutamine and
antioxidants). The emerging role of sterile inflammation in SCD-associated morbidity suggests
that anti-inflammatory approaches, such as therapies that induce heme degradation enzyme
hemeoxygenase-1 (MP4CO), scavenge ROS (antioxidants and L-glutamine), inhibit TLR4
signaling, degrade NETs (DNase-1), inhibit leukotrienes, or inhibit inflammasome- or IL-1β-
dependent signaling, could be beneficial in SCD (128, 129). Interestingly, IL-1RA-blocking Ab
(anakinra) and IL-1β-blocking Ab (canakinumab) are already FDA approved as anti-inflammatory
biologics for the treatment of rheumatoid arthritis (130) and NLRP3-inflammasome-mediated
cryopyrin-associated periodic syndrome (CAPS) (131), respectively. The existing evidence
justifies the need for clinical trials to test the safety and efficacy of repurposing these drugs for
SCD and also highlights the need for more studies to refine our understanding of the role of
inflammasome pathways in SCD.

THE PERFUSION PARADOX OF SICKLE CELL DISEASE: PATHOLOGY
IN THE CENTRAL NERVOUS AND CARDIOPULMONARY SYSTEMS

The complex pathways described above converge to cause large- and small-vessel vasculopathy
in SCD. From the standpoint of organ perfusion, both hypoperfusion of the microcirculation
(due to microvascular occlusion or altered vasoregulation) and hyperperfusion of the systemic
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macrocirculation and major organ systems (due to anemia and fixed stenosis) coexist, a phe-
nomenon that has been referred to as the perfusion paradox of SCD (132). While perfusion
abnormalities are widespread (Table 1), their effects on the central nervous system (CNS) and
cardiopulmonary system are profound and responsible for hallmark, devastating complications
in children and adults with SCD. The following sections describe the most important pathology
affecting the CNS and the cardiopulmonary system.

Large-Vessel Vasculopathy in the Central Nervous System

The CNS is severely affected in SCD, with both children and adults suffering from cerebrovascular
complications. One of the most striking manifestations of SCD is the high incidence of stroke in
young children (aged 2–9) with sickle cell anemia; stroke affected up to 10% of children prior to
the implementation of screening programs (81, 133). Numerous autopsy case reports and series
dating back several decades have outlined the major pathological lesions of pediatric stroke in SCD.
These studies have shown that the large and medium-sized branches of the internal carotid artery
are affected. Lesions include intimal hyperplasia leading to obliteration of the lumen, degeneration
of the internal elastic lamina, and intraluminal thrombosis (134, 135). It is unclear if vasospasm
occurs in the acute setting, but such a process could be analogous to the cerebral vasospasm seen
in the setting of subarachnoid hemorrhage. Stenosis of the large branches of the internal carotid
artery predisposes children to devastating strokes.

The main mechanism underlying the high susceptibility to stroke of children with SCD involves
the phenomenon known as decreased cerebrovascular reserve. Highly metabolically active areas of
the developing brain, such as cortical gray areas, are very dependent on the cerebral metabolic rate
of oxygen utilization. This, in turn, is a product of cerebral arterial oxygen content, cerebral blood
flow, and cerebral oxygen extraction. Cerebral blood flow is increased at baseline in children with
SCD (136) to compensate for anemia and hemodynamically significant stenosis. Furthermore,
both magnetic resonance imaging (MRI) and near infrared spectroscopy studies have shown that
the cerebral autoregulatory capacity, i.e., the capacity to adjust vessel volume in response to carbon
monoxide challenge or systemic blood pressure changes, is impaired in SCD (137, 138). Finally,
the oxygen extraction fraction is also increased at baseline (139, 140). As a result of maximized
compensatory mechanisms at steady state, when events characterized by acute or chronic anemia,
such as aplastic crises from parvovirus B19, occur, children with SCD may have no residual reserve
to meet the acutely increased oxygen demand. In this setting, cortical brain areas and cortical and
white matter watershed (border zone) areas (134, 141, 142), which are particularly vulnerable
to ischemia, may undergo acute infarction. In cortical areas, the ischemic insult may be evident
in MRI as gray matter atrophy, cortical thinning (142, 143), and atrophy of specific subcortical
regions (144). There is recent evidence that cortical atrophy progresses in children with SCD at
a rate similar to that of adults without SCD but with small-vessel disease (0.6–1% per year)—a
worrisome finding that suggests accelerated brain aging in SCD (145).

Over the past three decades, epidemiological studies have shed light on the natural history
and risk factors of pediatric stroke in SCD, and advances in neuroimaging methods have allowed
better characterization of the neurovascular phenotype in SCD. Children with sickle cell anemia
have a 100-fold risk of developing stroke as compared to children without SCD (146), and 70%
of children with SCD will experience a stroke recurrence (81). The fundamental role of anemia
in ischemic stroke in children with SCD has been confirmed by clinical practice, where red
blood cell transfusion rapidly improves stroke symptoms and cerebral tissue oxygen saturation
in children (147), and by a landmark clinical trial showing that chronic prophylactic transfusions
prevent stroke in 90% of children with high cerebral blood velocities as measured by transcranial
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Table 1 Main complications of SCD by organ system

System Complication Pathology and imaging findings Proposed mechanisms

Central nervous
system

Stroke � Large and medium artery intimal
hyperplasia of the MCA and/or ICA

� Large-vessel thrombosis
� Saccular aneurysms
� Moyamoya syndrome

� Decreased functional reserve
(CBF maximized at baseline)

� Decreased vascular autoregulation
� Hemostatic activation?

Cognitive
impairment

� Silent cerebral infarct
� Small-vessel rarefaction?

� Small-vessel dysfunction?

Cardiopulmonary
system

Pulmonary
hypertension

� Plexiform lesions
� Intimal hyperplasia
� Intraluminal thrombosis

� Hemostatic activation (CTEPH)
� Cell-free hemoglobin quenching of NO

Acute chest
syndrome

� Wedge pulmonary infarction
� In situ pulmonary thrombosis
� Rib infarction
� Pleural effusions
� Multilobar consolidations
� Foamy alveolar macrophages
� Arteriolar thrombosis

� Necrotic marrow and fat embolization
� Atelectasis and central hypoventilation
� Heme-mediated stimulation of TLR4

and inflammasome pathways
� Hyperadhesion of platelets and

neutrophils
� Infection

Restrictive lung
disease

� Decreased DLCO and TLC
� Lung fibrosis at the bases

� Increased circulating and activated
fibrocytes?

Genitourinary
system

Priapism � Impaired venous outflow from the
penis

� NO depletion leading to low PDE-5
levels

� Sludging of erythrocytes in the penile
vasculature

� Elevated adenosine levels

Chronic kidney
disease

� Focal segmental glomerulosclerosis
� Mesangial abnormalities
� Glomerual hypertrophy and

hyperfiltration

� Trafficking of macromolecules escaped
from the glomerulus into the mesangial
space and tubular epithelium

� Hemodynamic-mediated glomerular
injury

Papillary necrosis
of the kidney

� Clubbed calyces (RPG)
� Parenchymal enhancement of the

kidney (RPG)
� Triangular hypoattenuated areas

(CT)

� Medullary ischemia
� Increased blood viscosity in vasa recta

Hepatic system Hepatic
sequestration

� Acute hepatomegaly
� Dilated sinusoids

� Massive sequestration of erythrocytes in
the liver

� Compression of biliary ducts by
massively enlarged sinusoids

� Kupffer cell erythrophagocytosis

Hepatic crisis
and intrahepatic
cholestasis

� Sinusoidal obstruction by sickle cells
� Dilated biliary canalicules with bile

plugs
� Kupffer cell hyperplasia
� Centrilobular necrosis

� Ischemia and infarction caused by
sinusoidal occlusion

� Massive necrosis in intrahepatic
cholestasis

Abbreviations: CBF, cerebral blood flow; CT, computed tomography; CTEPH, chronic thromboembolic pulmonary hypertension; DLCO, diffusive
capacity of the lungs for carbon monoxide; ICA, internal carotid artery; MCA, middle carotid artery; NO, nitric oxide; PDE-5, phosphodiesterase-5;
RPG, retrograde pyelography; SCD, sickle cell disease; TLC, total lung capacity; TLR4, Toll-like receptor 4.
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Doppler (148). In addition to anemia, stroke is also associated with a number of other risk factors.
Observational studies have shown that reticulocytosis (149), low HbF levels, leukocytosis (150,
151), and complications such as ACS (81) are associated with an increased risk of stroke. In addition,
therapy with hydroxyurea, which induces HbF and reduces white blood cell count, reticulocyte
count, and hemolysis, is effective in the primary prevention of stroke (152). The beneficial effects
of transfusion, therefore, may be both an increase in cerebral arterial oxygen carrying capacity and
a reduction of HbS and its downstream deleterious effects on blood rheology.

While transcranial Doppler screening and prophylactic transfusions both represent major
breakthroughs in the care of patients with SCD, very little progress has been made in the elucida-
tion of the mechanisms leading to the primary vascular lesions, particularly large-vessel stenosis.
This knowledge gap is partly due to the lack of adequate animal models of stroke in SCD. Young
sickle mice do not commonly develop large-vessel vasculopathy and stroke (153, 154), and SCD
mouse models that employ additional ischemic stimuli, such as carotid ligation or acute hypoxia,
do not fully recapitulate human pathology. SCD mouse models do, however, exhibit certain spe-
cific aspects of the cerebral pathology seen with sickle cell anemia, including decreased brain
oxygen tension, increased cerebral blood flow (155), decreased blood flow regulation, and mi-
croinfarcts (156, 157). In addition, elevations of hypoxia inducible factor-1α (HIF-1α) expression
have confirmed the presence of tissue-level hypoxia (157). One unifying hypothesis that takes into
consideration both anemia and other sickle-specific factors was proposed by Hillery & Panepinto
(158) and posits that increased shear stress from chronic anemia–induced high carotid blood veloc-
ity and systemic endotheliopathy leads to endothelial injury, particularly at sites of bifurcations.
Endothelial dysfunction from hemolysis, NO deficiency, increased adhesiveness, and oxidative
stress compound the injury and lead to hyperplasia of the vessel wall. Platelet recruitment and
hemostatic activation then further contribute to obliteration of the lumen (158).

Among the SCD-specific factors, the role of hemolysis has garnered particular attention based
on several observations. The finding of a similar pattern of lesions in the pulmonary arteries
(described below) and large internal carotid branches in SCD (159) is intriguing, particularly
because there is also an overlap in the risk factors that lead to pulmonary and cerebrovascular
pathology, namely elevated systolic blood pressure and anemia. Thus, a unique mechanism
explaining both lesions may be hypothesized. Since hemolysis has been strongly implicated
in the pathogenesis of pulmonary hypertension in SCD, it is intuitive that it would also be
responsible for large-vessel stenosis in the CNS. This hypothesis is supported by the results
of a logistic regression analysis of the risk factors of elevated transcranial Doppler velocity in
children, showing that elevated lactate dehydrogenase is independently associated with increased
risk of transcranial Doppler ≥2 m/sec (OR per IU/L = 1.001, 95% CI 1.000–1.002; P = 0.047)
(160). Studies in adults with SCD lend further support to the role of hemolysis by showing a link
between the hyperhemolysis phenotype of SCD and stroke risk (17). It was therefore unexpected
that normalization of transcranial Doppler velocity with transfusion in children was not associated
with a reduction in markers of hemolysis in the Optimizing Primary Stroke Prevention in Sickle
Cell Anemia (STOP 2) trial (161). This discordance may be explained by the observation that
the approximately 22% of children who did not achieve normalization of transcranial Doppler
velocity in spite of optimal transfusion in the trial were also protected from stroke (162). In these
children, the beneficial effect of transfusion may have been mitigation of hemolysis-induced
endothelial dysfunction rather than reduction of hyperperfusion.

Small-Vessel Vasculopathy in the Central Nervous System

Another significant limitation in the understanding of the cerebral pathology in SCD relates to
the etiology of cerebral small-vessel vasculopathy. This is an important area of focus because MRI
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imaging has revealed that small-vessel lesions are the most common cerebrovascular lesions in
SCD, with a prevalence of 13% at 14 months of age (163) that progressively rises throughout
childhood (164) such that, by adulthood, it is approximately 50% (165, 166). In the pediatric
SCD literature, these lesions have been commonly referred to as SCIs and have been defined as
hyperintense lesions by T2-weighted MRI, >3 mm (167) or, alternatively, >5 mm in size (165)
and detected in two orthogonal planes. In the non-SCD literature and in adult patients with SCD,
SCIs have been commonly referred to as white matter hyperintensities or lacunar infarcts; all share
partially overlapping MRI findings. White matter hyperintensities may be a more appropriate term
since the association of SCI burden with decreased cognitive function (168–171) implies that SCIs
are not clinically silent. As further evidence of the clinical importance of SCIs, the Silent Infarct
Transfusion (SIT) trial has shown that, without transfusion, SCI burden at baseline predicts
further accrual of ischemic lesions and stroke (172), confirming the Cooperative Study of Sickle
Cell Disease (CSSCD) report of a higher risk of stroke in children with SCI (173). Anemia clearly
also plays a role in the development of SCI, as demonstrated by studies in children without SCD,
where an acute, severe drop in hemoglobin has been associated with the development of new white
matter hyperintensities. In children with SCD, the SIT trial has shown that transfusion may reduce
incident SCI, although SCIs were part of a composite endpoint that also included stroke, thus
hampering the analysis of the effect of transfusion on SCI alone (172). Regardless of the effect of
anemia, the cerebral arterial and venous microcirculation may be directly involved by the processes
of vaso-occlusion, ischemia-reperfusion injury, and endothelial dysfunction. Old autopsy studies
did show diffuse thickening and sclerosis of intracerebral arterioles (174), and more recent MRI
evidence shows potential involvement of deep medullary veins (175, 176). Alternatively, decreased
autoregulation may allow the detrimental effects of elevated cerebral blood flow, pulse pressure
(67), and velocity to be transmitted to the microcirculation and cause damage, as occurs in older
individuals with atherosclerosis.

One particularly subtle cerebral manifestation of SCD is cognitive impairment. While the link
between cognitive impairment and overt and silent infarction is well established, there is evidence
that children without MRI evidence of small-vessel disease also develop cognitive impairment
(177). In adults, the link between conventional measures of small-vessel disease, such as lacunar
infarcts, and cognitive function is even less clear. The largest study to date of cognitive function in
adults with SCD has shown that 33% of a cohort of patients with homozygous SCD and without
severe complications performed 1 standard deviation worse than the population mean in cognitive
tests and had a much higher prevalence of lacunar infarcts (13% versus 2%). However, there was
no association between lacunae and cognitive function (178). More sophisticated MRI protocols
that include both global and regional assessment of cortical and white matter areas and better
resolution offered by higher magnet fields [e.g., 7 Tesla (175, 179)] may be needed to identify the
neuroimaging signature of cognitive impairment in adults with SCD and children with seemingly
normal MRI scans.

Vasculopathy as a Risk Factor for Intracerebral Hemorrhage

Intracerebral hemorrhage preferentially affects young adults with SCD and is particularly common
in those suffering from aneurysms and Moyamoya syndrome (180). Moyamoya syndrome refers
to a pattern of vascularization that develops after occlusion of the large intracranial segments
of the internal carotids and compensatory engorgement of perforator vessels to internal brain
structures; the pattern appears angiographically as a puff of smoke. Both lesions occur with high
prevalence in SCD; the prevalence of aneurysms may be as high as 15% in women with SCD
aged 30–39 (181), and the prevalence of Moyamoya syndrome may be as high as 43% in patients
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who have experienced a pediatric stroke (180). Aneurysms are typically saccular and <5 mm in
size and may coexist with vasculopathy and a Moyamoya pattern of cerebral vascularization (182).
Autopsy review of patients with Moyamoya syndrome revealed that all three layers of the large
intracerebral arteries were affected, with intimal hyperplasia, medial atrophy with fibrosis, and
adventitial fibrosis (135).

Development of Pulmonary Hypertension and Left Ventricular Diastolic Heart
Dysfunction in Adults with Sickle Cell Disease

There is a surprising similarity between the arteriopathy of the CNS and pulmonary arterial
vasculature in SCD, and both are epidemiologically and mechanistically related to the severity
of the hemolytic anemia (183). Pulmonary arterial hypertension is caused by progressive smooth
muscle and intimal proliferation and in situ thrombosis, ultimately obliterating the pulmonary
arterioles and increasing pulmonary vascular resistance (PVR) (184). Over time, the right heart
begins to fail as afterload increases, leading to progressive dyspnea, reduced exercise capacity, and
increased risk of acute cor pulmonale and sudden cardiac death. Pulmonary arterial hypertension
is defined by a mean pulmonary artery pressure of ≥25 mm Hg, with a left ventricular end-
diastolic pressure of ≤15 mm Hg and a PVR value of >3 Wood units, indicating an increase in
the precapillary pulmonary pressures [World Health Organization (WHO) group 1 classification]
(185). However, several recent studies suggest that a mean pulmonary artery pressure between 20
and 24 mm Hg is associated with impaired exercise capacity and higher risk of death, suggesting
that even borderline increases in pulmonary pressure are relevant (186, 187). Pulmonary venous
hypertension is caused by increases in pressures downstream of the pulmonary arterioles and
capillaries, typically related to increases in left heart filling pressures caused by diastolic or systolic
heart failure (WHO group 2 classification). Both hemodynamic forms of pulmonary hypertension
are independent predictors of death in the adult SCD patient population (66).

Adult patients with SCD are screened for pulmonary hypertension using noninvasive Doppler
echocardiography, which can be used to estimate pulmonary artery systolic pressure, or with a
blood test to measure the plasma level of N-terminal pro–brain natriuretic peptide (NT-proBNP)
(75, 184). Patients for whom these screening tests or clinical signs and symptoms of right heart
failure indicate a high risk of pulmonary hypertension should undergo definitive testing with
invasive right heart catheterization.

Doppler-echocardiographic measurement of the tricuspid regurgitant jet velocity is used to
estimate the pulmonary artery systolic pressure. The velocity (V ) of blood flowing backward
from the right ventricle to the right atrium can be quantified by Doppler and is related to right
ventricular systolic pressure (P = 4V 2). The measured tricuspid regurgitant jet velocity has
been evaluated in numerous studies and even mild increases of >2.5–2.7 m/s are associated
with increased risk of death (58, 77, 110, 188–190). A meta-analysis of 45 screening studies
from 15 countries of more than 6,000 patients indicates that the prevalence of elevated tricuspid
regurgitant jet velocity ≥2.5 m/s is 30% (range 26–35%) in adults. Patients with elevated
tricuspid regurgitant jet velocity walked an estimated 30.4 (6.9–53.9) meters less than those
without elevated tricuspid regurgitant jet velocity, with an associated hazard ratio for death of 4.9
(2.4–9.7) (191). Another large population screening study confirmed that a tricuspid regurgitant
jet velocity ≥2.5 m/s was associated with a hazard ratio of 6.81 in multivariate analysis and rose
linearly above this value (50% of death at tricuspid regurgitant jet velocity of 3.2 m/s) (192).

NT-proBNP, a prepro hormone released from cardiac myocytes of the left and right ventricles
in response to pressure overload and wall stress, also identifies patients at higher risk of having
pulmonary hypertension, with lower exercise capacity and increased mortality risk. This has been
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shown in archived samples from the historic Multi-centers Trial of Hydroxyurea (193) and the
CSSCD cohorts (193), as well as the more recent National Institutes of Health-Pulmonary Hy-
pertension (NIH-PH) and Treatment of Pulmonary Hypertension and Sickle Cell Disease with
Sildenafil Treatment cohorts (62). A value of ≥160 pg/ml identifies SCD patients at higher risk
of having pulmonary hypertension and death.

Three large prospective screening studies performed in adult patients with SCD evalu-
ated hemodynamic parameters by right heart catheterization in subjects at risk for pulmonary
hypertension and their relationship to prospective mortality rates (66, 194–196). The largest
study with the longest follow-up is the NIH-PH cohort study, which screened 531 patients
and followed them for a median of 4.4 years (66, 194). Of these patients, 84 received right heart
catheterizations due to suspected pulmonary hypertension, and 55 (10.4%) were diagnosed with
pulmonary hypertension based on a mean pulmonary artery pressure >25 mm Hg. Among the
group with pulmonary hypertension, 56.4% had precapillary pulmonary arterial hypertension,
with a pulmonary artery occlusion pressure ≤15 mm Hg, and the remainder had pulmonary venous
hypertension, with elevated pulmonary artery occlusion pressures >15 mm Hg. The diagnosis of
both forms of pulmonary hypertension was associated with a high risk of death, and multivariate
analysis of hemodynamic variables identified systolic pulmonary artery pressure, pulmonary pulse
pressure, transpulmonary gradient, and PVR as predictors of mortality (66).

While the development of pulmonary hypertension is related to pulmonary vascular disease
in the setting of intravascular hemolysis and thrombotic events, it can also occur secondary to
diastolic left heart disease (77, 82). Measures of diastolic dysfunction obtained by cardiac echocar-
diography are associated with excess mortality, even after adjustment for tricuspid regurgitant jet
velocity, with a risk ratio of 3.5 (82). Remarkably, the presence of both diastolic dysfunction and
an elevated tricuspid regurgitant jet velocity is associated with a risk ratio for death of 12.0 (82).
Recent studies in SCD mice further highlight the importance of diastolic dysfunction in SCD,
and myocardial fibrosis is reported to occur both in these mice and in patients (the latter measured
by extracellular volume using cardiac MRI imaging) (197–199). The reason that patients with
SCD develop diastolic left heart disease is the subject of current research, with various studies
suggesting that it stems from direct toxic effects of heme or hemoglobin on the myocardium (200),
dilation caused by anemia that reduces the ability of the heart to relax during diastole (77, 82),
or myocardial fibrosis secondary to lifelong episodic microinfarctions from vaso-occlusive events
(197, 199).

While not a cardiac complication, the development of chronic kidney disease is a risk factor
for the development of pulmonary hypertension and appears to occur as a consequence of chronic
hemolysis and the injurious effects of filtered cell-free hemoglobin. The kidneys are among the
most commonly affected organs in patients with SCD (70, 201), and the presence of chronic
kidney disease is an independent predictor of pulmonary vascular disease and early mortality in
adults with SCD (68, 202). Proposed mechanisms for SCD nephropathy include hemoglobinuria,
ischemia-reperfusion injury, hyperfiltration, and hypertension (203).

CONVERGENCE OF MULTIPLE PATHOGENIC PATHWAYS:
ACUTE CHEST SYNDROME

ACS is an acute lung injury syndrome that affects children and adults with any of the major SCD
subtypes. While its clinical presentation is dramatic and the diagnosis straightforward (204), its
pathogenesis is complex and the exact cause frequently unknown. Epidemiologically, ACS is a com-
plication of VOC, based on its typical development 2–3 days after the onset of vaso-occlusive pain
(111); it is more common in children and, if untreated, has a high mortality [9% in adults (111)].
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The link to VOC is also mechanistic, since inhibition of HbS polymerization with hydroxyurea
reduces the incidence of ACS (205). The fundamental lesion of ACS is a hyperinflammatory event
leading to classic acute lung injury (Figure 4), defined by alveolar-capillary leak and neutrophilic
inflammation, most commonly in two or more dependent lobes, which may be radiographically
and clinically indistinguishable from multilobar pneumonia (206). Unlike pneumonia, ACS is the
result of intrinsic SCD pathology. Even in those cases where a microbial trigger is identified,
infarction is the product of the interplay between the infectious agent and SCD-related host vul-
nerability. As in acute lung injury observed in other conditions (e.g., sepsis, blood transfusion,
trauma) (207), an initial pathogenic stimulus leads to a hyperinflammatory response in the lungs,
with release of cytokines, engagement and massive recruitment of neutrophils, and sterile in-
flammation that leads to breakdown of the endothelial–epithelial barrier (gap formation), alveolar
capillary leak, and disruption of the oxygen exchange (Figure 4). In its most extreme manifestation
(207), acute lung injury presents with or evolves into acute respiratory distress syndrome.

Five major pathologic mechanisms leading to ACS have been identified; as a whole, these
mechanisms represent a compendium of SCD pathology and are instructive of the heterogeneity
of the SCD phenotype.

� Infection is the most common ACS trigger in children; common isolates include atypical
microorganisms and Streptococcus pneumoniae (208). While some microorganisms are particu-
larly virulent because of the functional asplenia that develops in infancy in sickle cell anemia,
the lung, in general, is more vulnerable to infection in children with SCD. Bronchial hyper-
reactivity, asthma, and chronic airway inflammation (209) are highly prevalent in children
with SCD and may result in a proinflammatory milieu that amplifies cellular and humoral
immunity to airway pathogens, thus leading to a paroxysmal, detrimental response (210, 211).

� Acute bouts of bone ischemia during VOC lead, in severe cases, to necrosis of the bone mar-
row. Edema and increased intraosteal pressure in turn lead to embolization of fat and bone
marrow to the microcirculation. As in the case of other sources of embolism (e.g., thrombi,
amniotic fluid), fat and marrow emboli lodge in the pulmonary microcirculation, resulting
in infarction (212). Alternatively, fat emboli may activate alveolar phospholipase A2 and
other proinflammatory and pro-oxidant lung enzymes, leading to injury (213). Fat embolism
is suspected when abundant lipid-laden macrophages are detected in the bronchoalveolar
lavage, a sensitive but nonspecific test (214). In fulminant cases, collectively referred to as fat
emboli syndrome, miliary dissemination of emboli to multiple organ systems may ensue. Fat
emboli syndrome is often fatal, even with aggressive transfusion and supportive care (215).

� The role of hemolysis in ACS is underscored by clinical observations linking severe hemolysis
to increased risk (216, 217) and by animal models showing that heme is directly responsible
for acute lung injury in SCD mouse models (89). This observation is compounded by the
finding that high levels of hemopexin, the enzyme that scavenges heme, can rescue acute
lung injury (89), while HO-1 deficiency potentiates it (57).

� Many lines of evidence point to thrombosis as a significant ACS trigger. Recent autopsy
findings have revealed platelet thrombi and increased endothelial von Willebrand factor
deposition in the lung microvasculature of patients who died from ACS (218). This
finding mirrors observations from our group of in vivo platelet–neutrophil aggregates and
microthrombi-mediated occlusion of pulmonary arterioles in SCD mice (16). Interestingly,
patients with evidence of platelet thrombi in lung arterioles post mortem had a higher
platelet count at the onset of ACS (218). Elevated initial platelet count and dramatic drops
during VOC have been found to portend a poor prognosis in ACS (29, 208, 219). To lend
further support to the role of thrombosis in ACS, in situ pulmonary thrombosis has been
found to complicate approximately 17% of ACS cases (219). Taken together and in the
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Figure 4
Mechanisms leading to the development of acute lung injury (ALI) and acute chest syndrome (ACS). Microbial pathogens interact with
alveolar epithelial and inflammatory cells to promote release of proinflammatory cytokines. Heme and cell-free hemoglobin released
from lysed sickle erythrocytes function as erythrocyte damage-associated molecular patterns (eDAMPs) to trigger Toll-like receptor 4
and inflammasome signaling in vascular and inflammatory cells. P-selectin-dependent platelet–neutrophil aggregates promote
vaso-occlusion and microthrombosis in lung arterioles, leading to loss of pulmonary blood flow. Fat and marrow emboli released from
necrotic bones obstruct the microcirculation and stimulate further inflammation by activating phospholipase A and other enzymes.
Lung vaso-occlusion promotes ischemia-reperfusion injury, failure of the blood–air barrier, infarction, alveolar flooding, neutrophil
recruitment, degranulation, release of neutrophil extracellular traps (NETosis), and oxidative burst, leading to epithelial injury,
formation of hyaline membranes, and respiratory failure, all of which are hallmarks of ALI and ACS.

context of the well-described hemostatic activation at baseline and its increase during VOC
in SCD (91), these findings suggest that the prothrombotic environment of VOC and ACS
is conducive to pulmonary thrombosis.

� Hypoventilation, as a result of pain with inspiration deriving from rib infarction (220) or
oversedation from opiate analgesia, may lead to atelectasis, which is a known risk factor for
pneumonia and lung injury (221).
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The five mechanisms described above may coexist or independently cause ACS; any initial lung
insult is bound to result in lung ventilation–perfusion mismatch, hypoxemia, and a potentiation
of the initial pathogenic triggers, a phenomenon that has been described as “the vicious cycle of
ACS” (110). It is also likely that ACS triggers or insults that activate neutrophils and platelets,
in the setting of intensifying hemolytic anemia with release of eDAMPs, will propagate sterile
inflammatory pathways through TLR4 and inflammasome signaling (discussed in Figure 1).

There have been attempts to link ACS to pulmonary fibrosis, another known manifestation
of chronic lung disease in SCD, as it is intuitive that repeated episodes of parenchymal injury
would result in deposition of fibrotic tissue. While ACS may accelerate restrictive lung disease
(222), there is evidence that other pathologic insults are necessary for the development of lung
fibrosis. Most recently, studies have found that elevated baseline levels of circulating fibrocytes,
a type of mesenchymal, bone marrow–derived cell, are responsible for lung fibrogenesis in SCD
mouse models (223). In humans, circulating fibrocytes are present in high numbers; are activated
in SCD, particularly in VOC; and are associated with restrictive pulmonary function test patterns
(224). These observations suggest that the contribution of chronic pathology may compound the
role of recurrent ACS in the development of restrictive lung disease in SCD.

CONCLUSION

The interplay among genetics, HbS polymerization–dependent hemolysis and sickling, vaso-
occlusion-dependent ischemia-reperfusion injury, endothelial dysfunction–dependent vasculopa-
thy, and sterile inflammation contributes to the pathophysiology of SCD, which promotes acute
and chronic complications of the CNS, heart, lung, kidney, liver, and other organs. Basic science
and clinical studies over past decade have led to the understanding of the cellular, molecular, and
biophysical mechanisms that promote these pathophysiological events and inspired the develop-
ment of several prophylactic therapies that are either FDA approved or currently in clinical trials.
However, recent findings showing a potential role for innate immune pathways in promoting
sterile inflammation in SCD suggest that our current understanding of the SCD pathophysiology
is still incomplete, and future studies should be aimed at harnessing the innate immune pathways
to design new therapies for SCD.
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